Micro Fuel Cells for the Portable Applications

  • Moon, Go-Young (Corporate R & D, Research Park, LG Chem., Ltd,) ;
  • Lee, Won-Ho (Corporate R & D, Research Park, LG Chem., Ltd,)
  • Published : 2003.12.01

Abstract

Due to the increasing intelligence, the increasing connectivity, and always-on characteristics energy needs for the portable electronics cannot be managed by the state-of-art battery technology. Micro fuel cell fuelled by aqueous methanol is gaining lots of interest from the new energy storage developers since it has the potential to offer the longer operation time to the portable electronic devices. Although the technical barriers to the commercialization exit, it is expected that the micro fuel cell technology bring huge benefits to the current energy storage market once it matures. In the article, benefits, challenges and market players of the direct methanol fuel cell arena is briefly reviewed.

Keywords

References

  1. US Fuel Cell Council, Fuel cells for portable power: markets, manufacture and cost, January. (2003)
  2. DTI and Carbon Trust, Review of UK fuel cell commercial potential, Feb. (2003)
  3. A. S. Arico, S. Srinivasan, and V. Antonucci, DMFCs: From fundamental aspects to technology development, Fuel Cells, 1, 133-161 (2001)
  4. M. P. Hogarth and T. R. Ralph, Catalysis for low temperature fuel cells, Part III: Challenges for the direct methanol fuel cell, Platinum Metals Rev., 46, 146-164 (2002)
  5. L. Carrette, K. A. Friedrich, and U. Stimming, Fuel cells-Fundamentals and applications, Fuel Cells, 1, 5-39 (2001)
  6. J. Kerres, W. Zhang, L. Jorissen, and V. Gogel, Application of different types of polyaryl-blend-membranes in DMFC, J. New. Mat. Electrochem. Systems, 5, 97-107 (2002)
  7. H. Wu, Y. Wang, and S. Wang, A methanol barrier polymer electrolyte membrane in direct methanol fuel cells, J. New. Mat. Electrochem. Systems, 5, 251-254 (2002)
  8. C. Manea, M. Mulder, Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell pplications, J. Mem. Sci., 206, 443-453 (2002)
  9. J. Kim, B. Kim, and B. Jung, Proton conductivities and methanol permeabilities of membranes made from partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene copolymers, J. Mem. Sci., 207, 129-137 (2002)
  10. C. W. Walker Jr., Proton-conducting polymer membrane comprised of a copolymer of 2-acrylamido-2-methylpropanesulfonic acid and 2-hydroxyethyl methacrylate, J. Power Sources, 110, 144-151 (2002)
  11. S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter,and K. Richau, Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells, J. Mem. Sci., 203, 215-225 (2002)
  12. K. Scott and W. M. Taama, P. Argyropoulos, Performance of the direct methanol fuel cell with radiation-grafted polymer membranes, J. Mem. Sci., 171, 119-130 (2000)
  13. T. Yamaguchi, M. Ibe, B. N. Nair, and S. Nakao, A pore-filling electrolyte membrane-electrode integrated system for a direct methanol fuel cell application, J. Electrochem. Soc., 149, A1448-A1453 (2002)
  14. J. Feichtinger, R. Galm, M. Walker, K-M. Baumgartner, A. Schulz, E. Rauchle, and U. Schumacher, Plasma polymerized barrier films on membranes for direct methanol fuel cells, Surf. Coatings Tech., 142-144, 181-186 (2001)
  15. F. Finsterwalder and G. Hambitzer, Proton conductive thin films prepared by plasma polymerization, J. Mem. Sci., 185, 105-124 (2001)
  16. Z.-G. Shao, X. Wang, and I.-M. Hsing, Composite Nafion/polyvinyl alcohol membranes for the direct methanol fuel cell, J. Mem. Sci., 210, 147-153 (2002)
  17. P. Dimitrova, K. A. Friedrich, U. Stimming, and B. Vogt, Modified Nafion-based membranes for use in direct methanol fuel cells, Solid State Ionics, 150, 115-122(2002)
  18. C. Yang, S. Srinivasan, A. S. Arico, P. Creti, and V. Baglio, Composite Nafion/Zirconium phosphate membranes for direct methanol fuel cell opration at high temperature, Electrochemical & Solid-State Lett., 4, A31-A34 (2001)
  19. N. Jia, M. C. Lefebvre, J. Halfyard, Z. Qi, and P.G. Pickup, Modification of Nafion proton exchange membranes to reduce methanol crossover in PEM fuel cells, Electrochemical & Solid-State Lett., 3, 529-531 (2000)
  20. J. P. Meyers and H. L. Maynard, Design considerations for miniaturized PEM fuel cells, J. Power Sources, 109, 76-88 (2002)
  21. S. C. Kelley, G. A. Deluga, and W. H. Smyrl, Miniature fuel cells fabricated on silicon substrates, AIChE J., 48, 1071-1082 (2002)
  22. S. C. Kelley, G. A. Deluga, and W. H. Smyrl, A miniature methanol/air polymer electrolyte fuel cell, Electrochemical and Solid-State Letters, 3, 407-409 (2000)
  23. J. Yu, P. Cheng, Z. Ma, and B. Yi, Fabrication of a miniature twin fuel cell on silicon wafer, Electrochimica Acta, 48, 1537-1541 (2003)
  24. A. Schmitz, M. Tranitz, S. Wagner, R. Hahn, and C. Hebling, Planar self-breathing fuel cells, J. Power Sources, 118, 162-171 (2003)
  25. R. O'Hayre, T. Fabian, S.-J. Lee, and F. B. Prinz, Lateral ionic conduction in planar array fuel cells, J. The Electrochemical Soc., 150, A430-A438 (2003)
  26. R. O'Hayre, D. Braithwaite, W. Hermann, S.-J.Lee, T. Fabian, S.-W. Cha, Y. Saito, and F. B. Prinz, Development of portable fuel cell arrays with printed-circuit technology, J. Power Sources,124, 459-472 (2003)
  27. J. S. Wainright, R. F. Savinell, C. C. Liu, and M. Litt, Microfabricated fuel cells, Electorchimica Acta, 48, 2869-2877 (2003)
  28. Fuel Cell Today, Fuel cell market survey: Portable applications, July (2003). www.fuelcelltoday.com