• Title/Summary/Keyword: direct current motor

Search Result 290, Processing Time 0.029 seconds

An Evaluation of Voltage Source PAWM Inverter by Torque Ripple Content (토오크 맥동량에 의한 전압원 PAWM 인버터의 평가)

  • Lee, Chi-Hwan;Koo, Bon-Ho;Kwon, Wo-Hyen
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.5
    • /
    • pp.60-70
    • /
    • 1989
  • In this paper, a new HTF(Harmonic torque function) which takes into account the phasor of harmonic current, and which represents torque ripple content of induction motor is proposed. Through experiments and computer simulations using direct-quadrature two axis model, the proposed HTF is proved to be valid. Applying this function, six-step, SPWM and TPWM pulse-amplitude-width-controlled inverters are evaluated and compared with each other. A good control strategy for PAWM inverters was chosen from the results. It turns out that TPWM is superior to SPWM in torqur ripple content and output voltage amplitude of fundamental wave and six-step is better than PWM when CR is 9.

  • PDF

Equivalent Dynamic Modeling of Coil Bundle for Prediction of Dynamic Properties of Stator in Small Motors (소형 전동기의 고정자 동특성 예측을 위한 코일 다발의 등가 동적 모형화)

  • 은희광;고홍석;김광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.540-545
    • /
    • 2001
  • In case of small motors, coil bundle occupies a large portion of stator in view of mass and volume as well as dynamics. It is observed through modal test on the stator of an IPM BLDC (interior permanent magnet brushless direct current) motor that coil bundle wound on the stator core causes the first and second natural frequencies to decrease by about 20-30% compared with those of bare stator. Especially the third natural frequency is newly observed below 3 KHz, which is not observed on the bare stator. It is found that at the third mode the end-coil and the core vibrate out of phase in radial direction. In this paper, the stator is dynamically modeled in terms of the core and the coil bundle consisting of the end-coil and the slot coil based on the above observations for the prediction of dynamic properties. The core can easily be modeled using finite element method with its actual material properties and geometric shape. The concept of equivalent bending stiffness is used for modeling of the end-coil so that predictions may match with the measured natural frequencies for the end-coil cut out of the stator. Although the same concept can be applied to the slot coil, separation of the slot coil from the stator is impractical. Therefore, equivalent bending stiffness of the slot coil is determined through iterative comparisons with the measurements of natural frequencies of the stator with the slot coil in it.

  • PDF

Intraoperative Neurophysiology Monitoring for Spinal Dysraphism

  • Kim, Keewon
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.2
    • /
    • pp.143-150
    • /
    • 2021
  • Spinal dysraphism often causes neurological impairment from direct involvement of lesions or from cord tethering. The conus medullaris and lumbosacral roots are most vulnerable. Surgical intervention such as untethering surgery is indicated to minimize or prevent further neurological deficits. Because untethering surgery itself imposes risk of neural injury, intraoperative neurophysiological monitoring (IONM) is indicated to help surgeons to be guided during surgery and to improve functional outcome. Monitoring of electromyography (EMG), motor evoked potential, and bulbocavernosus reflex (BCR) is essential modalities in IONM for untethering. Sensory evoked potential can be also employed to further interpretation. In specific, free-running EMG and triggered EMG is of most utility to identify lumbosacral roots within the field of surgery and filum terminale or non-functioning cord can be also confirmed by absence of responses at higher intensity of stimulation. The sacral nervous system should be vigilantly monitored as pathophysiology of tethered cord syndrome affects the sacral function most and earliest. BCR monitoring can be readily applicable for sacral monitoring and has been shown to be useful for prediction of postoperative sacral dysfunction. Further research is guaranteed because current IONM methodology in spinal dysraphism is still deficient of quantitative and objective evaluation and fails to directly measure the sacral autonomic nervous system.

A Performance Analysis of 60 Horsepower Vertical Mounted Gasoline Engine Applied to Multi-copter of Unmanned Aircraft Vehicle (무인 멀티콥터에 적용된 60마력급 직립형 가솔린 엔진의 성능 분석)

  • RYUNKYUNG KIM;KYUNGWAN KO;SUNGGI KWON;GYECHOON PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.758-766
    • /
    • 2023
  • Multi-copter of unmanned aerial vehicle (UAV) was initially developed as strategic technology in the only military field, but it is developing into an industrial field with a wide range of applications in the civil sector based on the development and convergence of aviation technology and information and communication technology. Currently, the degree of utilization of multi-copter is increasing in various industries for the purpose of performing classic tactical missions, logistics transportation, farm management, internet supply, video filming, weather management, life-saving, etc, and active technology development responding to market demand. Existing commercial multi-copter mainly use an electric energy propulsion system consisting of an electric battery and a brushless direct current (BLDC) motor. It is the limitations for usage in the flying time (up to 20 minutes) and payload (less than 20 kg). this study aims to overcome these limitations and expand the commercialization of engine-powered multi-copter of UAV in various industries in the futures.

A Study on Rehabilitation Treatment Using Radiofrequency Treatment (고주파 통증치료기를 이용한 재활 치료에 대한 연구)

  • Jo, Jae-Hyun;Lee, Sang-Yong;Lee, Geun-Yong;Yoon, Se-Jin;Cheong, Ha-Young;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.212-218
    • /
    • 2020
  • When Radiofrequency energy is applied to the human body, the vibration width is very short. Therefore, the electrolyte burn generated when using the direct current does not occur. Ion molecules, polarized molecules, etc., vibrate more than 40,000 times per second, converting them into frictional heat to generate deep heat. The blood flow of capillaries increases 4-5 times more than at rest, increasing the supply of oxygen, nutrients, antibodies, and white blood cells. In addition, the electrochemical reaction does not occur because the vibration width and the pulsation period are very short. It is a physical factor treatment method that does not stimulate the sensory nerves and motor nerves. In this study, an isotonic exercise is performed in a young normal adult using a Radiofrequency pain treatment device. The purpose of this study is to integrate rehabilitation therapy by measuring electromyography data during isotonic exercise and confirming the effect on changes in motor neuron response. The EMG data generated when isotonic exercise of the forearm biceps muscle and the EMG data measured after the use of a Radiofrequency pain treatment device after exercise were RMS, respectively, and verified through t-test. It was confirmed that there was a significant difference in both men and women because the t-value was smaller than the significance level p (<.05).

Theoretical analysis of power requirement of a four-row tractor-mounted radish collector

  • Khine Myat Swe;Mohammod Ali;Milon Chowdhury;Md Nasim Reza;Md Ashrafuzzaman Gulandaz;Sang-Hee Lee;Sun-Ok Chung;Soon Jung Hong
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.677-696
    • /
    • 2022
  • Development of radish collectors may enhance radish production and promote upland crop mechanization in the Republic of Korea. Theoretical analysis of power is crucial to ensure the optimum design of agricultural machinery. The aim of the present study is to analyze theoretically the power requirement of a tractor-mounted radish collector under development and to propose design guidelines. The important components of the radish collector were belt-type conveyors, three hydraulic motors, and a direct current (DC) winch motor to operate the total radish collecting process. Theoretical equations were used to calculate the hydraulic motor's power, winch motor power, and draft power at loaded and unloaded conditions. A variety of tractors (44 - 74 kW) and different soil characteristics (hard, firm, tilted, and sandy) were considered to investigate the appropriate drawbar power. Variations of the power requirement of the tractor-mounted radish collector were observed due to modifications of the design parameters. The required hydraulic power of the stem cutting conveyor, stem cutting blade, and transfer conveyor of the radish collector were 0.23 and 0.24, 0.18 and 0.19, and 0.19 and 0.22 kW under unloaded and loaded conditions, respectively. The maximum draft power was calculated as 0.89, 1.07, 1.25, and 1.61 kW at a 30° tilted angle for hard, firm, tilted, and sandy soil, respectively. The calculation showed 2.07 kW DC power was required for unfolding or folding the stem-cutting conveyor. A maximum power of 4.78 kW was prescribed for conducting the whole process of the tractor-mounted radish collector. The analysis of power introduced in this study will be helpful to select the appropriate design parameters for the successful development of a tractor-mounted radish collector.

A Study on Optimal Design of 100 V Class Super-junction Trench MOSFET (비균일 100V 급 초접합 트랜치 MOSFET 최적화 설계 연구)

  • Lho, Young Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.109-114
    • /
    • 2013
  • Power MOSFET (metal-oxide semiconductor field-effect transistor) are widely used in power electronics applications, such as BLDC (Brushless Direct Current) motor and power module, etc. For the conventional power MOSFET device structure, there exists a tradeoff relationship between specific on-state resistance and breakdown voltage. In order to overcome the tradeoff relationship, a non-uniform super-junction (SJ) trench MOSFET (TMOSFET) structure for an optimal design is proposed in this paper. It is required that the specific on-resistance of non-uniform SJ TMOSFET is less than that of uniform SJ TMOSFET under the same breakdown voltage. The idea with a linearly graded doping profile is proposed to achieve a much better electric field distribution in the drift region. The structure modelling of a unit cell, the characteristic analyses for doping density, and potential distribution are simulated by using of the SILVACO TCAD 2D device simulator, Atlas. As a result, the non-uniform SJ TMOSFET shows the better performance than the uniform SJ TMOSFET in the specific on-resistance at the class of 100V.

Treatment of glabellar frown lines using selective nerve block with radiofrequency ablation (고주파절제술을 통한 선택적 신경차단법을 이용한 미간주름의 개선)

  • Hwang, Yong Seok;Kim, Young Seok;Roh, Tai Suk;Tark, Kwan Chul;Lee, Kun Chang
    • Archives of Plastic Surgery
    • /
    • v.36 no.2
    • /
    • pp.205-210
    • /
    • 2009
  • Purpose: Corrugator supercilii muscle pulls eyebrow to inferomedial direction and produces the vertical component of the glabellar line formation. Current techniques for eliminating of glabellar frown include direct resection of corrugators and botulinum toxin injection. Muscle resection in endoscopic face lift procedure is relatively complex and has many disadvantages ranging from possible nerve injury, postoperative edema, pain and a long recovery period. The Botox treatment on the other hand is much more simple in technique but has a short duration of action. The authors have attempted new ways of finding improved treatment of the glabellar frown by selectively blocking of motor nerves innervating the corrugator supercili muscle by using radiofrequency ablation technique. Methods: A total of 80 patients were recruited in our study during the period between Feb. 2007 to June 2008. A probe was introduced from the supraorbital ridge and advanced to the corrugator supercilii muscle. Nerve stimulator was then used to locate the nerve innervating the corrugator and radiofrequency ablation of the nerve was done. Results: In all patients, there were marked improvement in glabellar frown after treatment. There were no reported cases of any relapses during the follow up period. No complication was noted such as facial nerve injury. No patient complained of any adverse symptoms other than slight discomfort due to swelling of the operation site. Conclusion: The treatment of glabellar frown lines using selective nerve block with radiofrequency ablation was not only less invasive but also excellent in surgical outcomes.

Attitude Estimation of Agricultural Unmanned Helicopters using Inertial Measurement Sensors (관성센서를 이용한 농용 무인 헬리콥터의 자세 추정)

  • Bae, Yeonghwan;Oh, Minseok;Koo, Young Mo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.159-163
    • /
    • 2014
  • Agricultural unmanned helicopters have become a new paradigm for aerial application. Yet, such agricultural helicopters require easy and affordable attitude control systems. Therefore, this study presents an affordable attitude measurement system using a DCM (direction cosine matrix) algorithm that would be applied to agricultural unmanned helicopters. An IMU using a low-cost MEMS and an algorithm to estimate the attitude of the helicopter were applied in a gimbals structure to evaluate the accuracy of the attitude measurements. The estimation errors in the attitude were determined in comparison with the true angles determined by absolute position encoders. The DCM algorithm and sensors showed an accuracy of about 1.1% for the roll and pitch angle estimation. However, the accuracy of the yaw angle estimation at 3.7% was relatively larger. Such errors may be due to the magnetic field of the stepping motor and encoder system. Notwithstanding, since the intrinsic behavior of the agricultural helicopter remains steady, the determination of attitude would be reliable and practical.

A survey on the EMF Levels of Study and Electric Appliances in Korea (국내 전철 및 가전제품을 대상으로 한 전자장 수준 실태조사)

  • Jang, Seong Ki;Cho, Yong Sung;Lee, Seok Jo;Yoo, Seong Wha;Jung, Kyung Mi;Lim, Jun Ho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.1
    • /
    • pp.71-81
    • /
    • 2005
  • The purposes of this study was to collect, analyze, and describe the MF exposure levels from subways in Korea and to measure and evaluate the MF levels generated from electric appliances used at general homes. The target subway lines were Seoul Metropolitan Line 1 to Line 8, Bundang Line, Incheon Line, Daegu Line, Gwangju Line, and Busan Line 1 and Line 2. We measured at each station in those subway lines and, all the train types (pantograph-equipped, motor-equipped, and common), and platform types(facing and isolating) were investigated by the distance(80, 200, 400 cm) from the train on 19 targeted subway lines using 3 magnetic field measuring devices (EMDEXII, Enertech Co.) during the survey from January till October, 2004. On the other hand, the levels of the 60Hz magnetic fields generated from 14 items of home electric appliances such as electric blankets, hair dryers, electric razors, etc. were measured at 10 general homes using 5 EMDEXII meters with a sampling interval of 1.5 second by the distance(surface, 30, 50, 100, 300cm ) from the target electric appliances. The survey results in the whole subway lines examined in this study were as follows; Seoul Metropolitan Line 4 using AC(alternating current) power source showed the highest mean value of $2.85{\mu}T$, followed by Seoul Metropolitan Line 1 running between Seoul and Incheon using AC($2.78{\mu}T$), Seoul Metropolitan Line 1 between Seoul and Uijongbu using AC($2.73{\mu}T$), Bundang Line using AC($1.79{\mu}T$), Seoul Metropolitan Line 1 connected from Yongsan using AC($1.67{\mu}T$), Seoul Metropolitan Line 1 between Seoul and Suwon using AC($0.79{\mu}T$), and so on. In general, the intensity of the magnetic field in the subway systems in Korea was significantly higher when using AC($2.14{\pm}0.91{\mu}T$) than when using DC($0.29{\pm}0.44{\mu}T$) power source. Among the home electric appliances examined, microwave ovens showed the highest mean value of $7.69{\mu}T$, followed by hair dryers($6.47{\mu}T$), vacuum cleaners($5.27{\mu}T$), televisions ($2.26{\mu}T$), electric blankets($1.38{\mu}T$), personal computers ($0.81{\mu}T$), and so on. Two items of electric appliances showed the excess value of $0.2{\mu}T$ at the distance of 30cm in the MF exposure level; electric razors $1.58{\pm}2.13{\mu}T$ and vacuum cleaners $0.48{\pm}0.44{\mu}T$. As a whole, this study showed a tendency that the shift of the MF levels according to the increase of distance from the electric appliances was lower than those of the results surveyed in UK and USA. As a result, this study is expected to suggest meaningful data for the future study in exposure assessment of magnetic fields and for the establishment of guidelines for subways and electric appliances in Korea. More detailed and large scaled exposure assessment studies should be performed continuously to get the various and useful information on health risk assessment of MFs in Korea.