• Title/Summary/Keyword: direct band gap

Search Result 135, Processing Time 0.034 seconds

Influence of Deposition Pressure on Structural and Optical Properties of SnS Thin Films Grown by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 성장 된 SnS 박막의 구조적 및 광학적 특성에 대한 증착 압력의 영향)

  • Son, Seung-Ik;Lee, Sang Woon;Son, Chang Sik;Hwang, Donghyun
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.33-38
    • /
    • 2020
  • Single-phased SnS thin films have been prepared by RF magnetron sputtering at various deposition pressures. The effect of deposition pressure on the structural and optical properties of polycrystalline SnS thin films was studied using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible-near infrared (UV-Vis-NIR) spectrophotometer. The XRD analysis revealed the orthorhombic structure of the SnS thin films oriented along the (111) plane direction. As the deposition pressure was increased from 5 mTorr to 15 mTorr, the intensity of the peak on the (111) plane increased, and the intensity decreased under the condition of 20 mTorr. The binding energy difference at the Sn 3d5/2 and S 2p3/2 core levels was about 324.5 eV, indicating that the SnS thin film was prepared as a pure Sn-S phase. The optical properties of the SnS thin films indicate the presence of direct allowed transitions with corresponding energy band gap in the rang 1.47-1.57 eV.

Effect of Deposition Temperature on Structural Properties of ZnO Thin Films on 4H-SiC Substrate (4H-SiC 기판 위에 성장된 ZnO 박막의 온도에 따른 구조적 특성 분석)

  • Kim, Ji-Hong;Cho, Dae-Hyung;Moon, Byung-Moo;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.120-120
    • /
    • 2008
  • We demonstrate epitaxial growth of ZnO thin films on 4H-SiC(0001) substrates using pulsed laser deposition (PLD). ZnO and SiC have attracted attention for their special material properties as wide band gap semiconductors. Especially, ZnO could be applied to optoelectronic applications such as light emitting devices and photo detectors due to its direct wide bandgap (Eg) of ~3.37eV and large exciton binding energy of ~60meV. SiC shows a good lattice matching to ZnO compared with other commonly used substrates and in this regard SiC is a good candidate as a substrate for ZnO. In this work, ZnO thin films were grown on 4H-SiC(0001) substrates by PLD using an Nd:YAG laser with a 355nm wavelength. The crystalline properties of the films were evaluated by x-ray diffraction (XRD) $\theta-2\theta$, rocking curve and pole figure measurements using a high-resolution diffractometer. The surface morphology of the films was studied by atomic force microscopy (AFM).

  • PDF

Electrodeposition of SnS Thin film Solar Cells in the Presence of Sodium Citrate

  • Kihal, Rafiaa;Rahal, Hassiba;Affoune, Abed Mohamed;Ghers, Mokhtar
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.206-214
    • /
    • 2017
  • SnS films have been prepared by electrodeposition technique onto Cu and ITO substrates using acidic solutions containing tin chloride and sodium thiosulfate with sodium citrate as an additive. The effects of sodium citrate on the electrochemical behavior of electrolyte bath containing tin chloride and sodium thiosulfate were investigated by cyclic voltammetry and chronoamperometry techniques. Deposited films were characterized by XRD, FTIR, SEM, optical, photoelectrochemical, and electrical measurements. XRD data showed that deposited SnS with sodium citrate on both substrates were polycrystalline with orthorhombic structures and preferential orientations along (111) directions. However, SnS films with sodium citrate on Cu substrate exhibited a good crystalline structure if compared with that deposited on ITO substrates. FTIR results confirmed the presence of SnS films at peaks 1384 and $560cm^{-1}$. SEM images revealed that SnS with sodium citrate on Cu substrate are well covered with a smooth and uniform surface morphology than deposited on ITO substrate. The direct band gap of the films is about 1.3 eV. p-type semiconductor conduction of SnS was confirmed by photoelectrochemical and Hall Effect measurements. Electrical properties of SnS films showed a low electrical resistivity of $30{\Omega}cm$, carrier concentration of $2.6{\times}10^{15}cm^{-3}$ and mobility of $80cm^2V^{-1}s^{-1}$.

Change in the photocatalytic activity of ZnO nanoparticles by additive H2O

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Choi, Jin-Woo;Kim, Min-Hee;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.285-285
    • /
    • 2010
  • Zinc oxide (ZnO) is a direct band gap semiconductor with 3.37 eV, which has in a hexagonal wurtzite structure. ZnO is a good candidate for a photocatalyst because it has physical and chemical stability, high oxidative properties, and absorbs of ultraviolet light. During ZnO is irradiated by UV light, redox (reduction and oxidation) reactions will occur on the ZnO surface, generating the radicals O2- and OH. These two powerful oxidizing agents have been proven to be effective in decomposition of harmful organic materials, converting them into CO2 and H2O. Therefore, we assume that oxygen on the surface of ZnO is a very important factor in the photocatalytic activities of ZnO nanoparticles. Recently, ZnO nanoparticles are studied in various application fields by many researchers. Photocatalyst research is progressing much in various application fields. But the ZnO nanoparticles have disadvantage that is unstable in water in comparison titanium dioxide (TiO2). The Zn(OH)2 was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoaprticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their phtocatalytic activity changes. The characterization of ZnO nanoparticles were analyzed by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and BET test. Also we defined the photocatalytic activity of ZnO nanoparticles using UV-VIS Spectroscopy. And we explained changing of photocatalytic activity after the water treatment using X-ray Photoelectron Spectroscopy (XPS).

  • PDF

차세대 비휘발성 메모리 적용을 위한 Staggered Tunnel Barrier (Si3N4/ZrO2, Si3N4/HfAlO)에 대한 전기적 특성 평가

  • Lee, Dong-Hyeon;Jeong, Hong-Bae;Lee, Yeong-Hui;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.288-288
    • /
    • 2011
  • 최근 Charge Trap Flash (CTF) Non-Volatile Memory (NVM) 소자가 30 nm node 이하로 보고 되면서, 고집적화 플래시 메모리 소자로 각광 받고 있다. 기존의 CTF NVM 소자의 tunnel layer로 쓰이는 SiO2는 성장의 용이성과 Si 기판과의 계면특성, 낮은 누설전류와 같은 장점을 지니고 있다. 하지만 단일층의 SiO2를 tunnel layer로 사용하는 기존의 Non-Valatile Memory (NVM)는 두께가 5 nm 이하에서 direct tunneling과 Stress Induced Leakage Current (SILC) 등의 효과로 인해 게이트 누설 전류가 증가하여 메모리 보존특성의 감소와 같은 신뢰성 저하에 문제점을 지니고 있다. 이를 극복하기 위한 방안으로, 최근 CTF NVM 소자의 Tunnel Barrier Engineered (TBE) 기술이 많이 접목되고 있는 상황이다. TBE 기술은 SiO2 단일층 대신에 서로 다른 유전율을 가지는 절연막을 적층시킴으로서 전계에 대한 민감도를 높여 메모리 소자의 쓰기/지우기 동작 특성과 보존특성을 동시에 개선하는 방법이다. 또한 터널링 절연막으로 유전률이 큰 High-K 물질을 이용하면 물리적인 두께를 증가시킴으로서 누설 전류를 줄이고, 단위 면적당 gate capacitance값을 늘릴 수 있어 메모리 소자의 동작 특성을 개선할 수 있다. 본 연구에서는 CTF NVM 소자의 trap layer로 쓰이는 HfO2의 두께를 5 nm, blocking layer의 역할을 하는 Al2O3의 두께를 12 nm로 하고, tunnel layer로 Si3N4막 위에 유전율과 Energy BandGap이 유사한 HfAlO와 ZrO2를 적층하여 Program/Erase Speed, Retention, Endurance를 측정을 통해 메모리 소자로서의 특성을 비교 분석하였다.

  • PDF

Effect of Substrate Temperature and Post-Annealing on Structural and Electrical Properties of ZnO Thin Films for Gas Sensor Applications

  • Do, Gang-Min;Kim, Ji-Hong;No, Ji-Hyeong;Lee, Gyeong-Ju;Mun, Seong-Jun;Kim, Jae-Won;Park, Jae-Ho;Jo, Seul-Gi;Sin, Ju-Hong;Yeo, In-Hyeong;Mun, Byeong-Mu;Gu, Sang-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.105-105
    • /
    • 2011
  • ZnO is a promising material since it could be applied to many fields such as solar cells, laser diodes, thin films transistors and gas sensors. ZnO has a wide and direct band gap for about 3.37 eV at room temperature and a high exciton binding energy of 60 meV. In particular, ZnO features high sensitivity to toxic and combustible gas such as CO, NOX, so on. The development of gas sensors to monitor the toxic and combustible gases is imperative due to the concerns for enviromental pollution and the safety requirements for the industry. In this study, we investigated the effect of substrate temperature and post-annealing on structural and electrical properties of ZnO thin films. ZnO thin films were deposited by pulsed laser deposition (PLD) at various temperatures at from room temperature to $600^{\circ}C$. After that, post-annealing were performed at $600^{\circ}C$. To inspect the structural properties of the deposited ZnO thin films, X-ray diffraction (XRD) was carried out. For gas sensors, the morphology of the films is dominant factor since it is deeply related with the film surface area. Therefore, the atomic force microscopy (AFM) and field emission scanning electron microscopy (FE-SEM) were used to observe the surface of the ZnO thin films. Furthermore, we analyzed the electrical properties by using a Hall measurement system.

  • PDF

Aerosol Jet Deposition of $CuInS_2$ Thin Films

  • Fan, Rong;Kong, Seon-Mi;Kim, Dong-Chan;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.159-159
    • /
    • 2011
  • Among the semiconductor ternary compounds in the I-III-$VI_2$ series, $CulnS_2$ ($CulnSe_2$) are one of the promising materials for photovoltaic applications because of the suitability of their electrical and optical properties. The $CuInS_2$ thin film is one of I-III-$VI_2$ type semiconductors, which crystallizes in the chalcopyrite structure. Its direct band gap of 1.5 eV, high absorption coefficient and environmental viewpoint that $CuInS_2$ does not contain any toxic constituents make it suitable for terrestrial photovoltaic applications. A variety of techniques have been applied to deposit $CuInS_2$ thin films, such as single/double source evaporation, coevaporation, rf sputtering, chemical vapor deposition and chemical spray pyrolysis. This is the first report that $CuInS_2$ thin films have been prepared by Aerosol Jet Deposition (AJD) technique which is a novel and attractive method because thin films with high deposition rate can be grown at very low cost. In this study, $CuInS_2$ thin films have been prepared by Aerosol Jet Deposition (AJD) method which employs a nozzle expansion. The mixed fluid is expanded through the nozzle into the chamber evacuated in a lower pressure to deposit $CuInS_2$ films on Mo coated glass substrate. In this AJD system, the characteristics of $CuInS_2$ films are dependent on various deposition parameters, such as compositional ratio of precursor solution, flow rate of carrier gas, stagnation pressure, substrate temperature, nozzle shape, nozzle size and chamber pressure, etc. In this report, $CuInS_2$ thin films are deposited using the deposition parameters such as the compositional ratio of the precursor solution and the substrate temperature. The deposited $CuInS_2$ thin films will be analyzed in terms of deposition rate, crystal structure, and optical properties.

  • PDF

Structural and Optical Properties of Copper Indium Gallium Selenide Thin Films Prepared by RF Magnetron Sputtering

  • Kong, Seon-Mi;Fan, Rong;Kim, Dong-Chan;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.158-158
    • /
    • 2011
  • $Cu(In_xGa_{1-x})Se_2$ (CIGS) thin film solar cell is one of the most promising solar cells in photovoltaic devices. CIGS has a direct band gap which varied from 1.0 to 1.26 eV, depending on the Ga to In ratio. Also, CIGS has been studying for an absorber in thin film solar cells due to their highest absorption coefficient which is $1{\times}10^5cm^{-1}$ and good stability for deposition process at high temperature of $450{\sim}590^{\circ}C$. Currently, the highest efficiency of CIGS thin film solar cell is approximately 20.3%, which is closely approaching to the efficiency of poly-silicon solar cell. The deposition technique is one of the most important points in preparing CIGS thin film solar cells. Among the various deposition techniques, the sputtering is known to be very effective and feasible process for mass production. In this study, CIGS thin films have been prepared by rf magnetron sputtering method using a single target. The optical and structural properties of CIGS films are generally dependent on deposition parameters. Therefore, we will explore the influence of deposition power on the properties of CIGS films and the films will be deposited by rf magnetron sputtering using CIGS single target on Mo coated soda lime glass at $500^{\circ}C$. The thickness of CIGS films will be measured by Tencor-P1 profiler. The optical properties will be measured by UV-visible spectroscopy. The crystal structure will be analyzed using X-ray diffraction (XRD). Finally the optimal deposition conditions for CIGS thin films will be developed.

  • PDF

The Influence of Deposition Temperature of ALD n-type Buffer ZnO Layer on Device Characteristics of Electrodeposited Cu2O Thin Film Solar Cells (ALD ZnO 버퍼층 증착 온도가 전착 Cu2O 박막 태양전지 소자 특성에 미치는 영향)

  • Cho, Jae Yu;Tran, Man Hieu;Heo, Jaeyeong
    • Current Photovoltaic Research
    • /
    • v.6 no.1
    • /
    • pp.21-26
    • /
    • 2018
  • Beside several advantages, the PV power generation as a clean energy source, is still below the supply level due to high power generation cost. Therefore, the interest in fabricating low-cost thin film solar cells is increasing continuously. $Cu_2O$, a low cost photovoltaic material, has a wide direct band gap of ~2.1 eV has along with the high theoretical energy conversion efficiency of about 20%. On the other hand, it has other benefits such as earth-abundance, low cost, non-toxic, high carrier mobility ($100cm^2/Vs$). In spite of these various advantages, the efficiency of $Cu_2O$ based solar cells is still significantly lower than the theoretical limit as reported in several literatures. One of the reasons behind the low efficiency of $Cu_2O$ solar cells can be the formation of CuO layer due to atmospheric surface oxidation of $Cu_2O$ absorber layer. In this work, atomic layer deposition method was used to remove the CuO layer that formed on $Cu_2O$ surface. First, $Cu_2O$ absorber layer was deposited by electrodeposition. On top of it buffer (ZnO) and TCO (AZO) layers were deposited by atomic layer deposition and rf-magnetron sputtering respectively. We fabricated the cells with a change in the deposition temperature of buffer layer ranging between $80^{\circ}C$ to $140^{\circ}C$. Finally, we compared the performance of fabricated solar cells, and studied the influence of buffer layer deposition temperature on $Cu_2O$ based solar cells by J-V and XPS measurements.

Synthesis and Characterization of CZTS film deposited by Chemical Bath Deposition method

  • Arepalli, Vinaya Kumar;Kumar, Challa Kiran;Park, Nam-Kyu;Nang, Lam Van;Kim, Eui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.99.1-99.1
    • /
    • 2012
  • The thin-film photovoltaic absorbers (CdTe and $Cu(In,Ga)Se_2$) can achieve solar conversion efficiencies of up to 20% and are now commercially available, but the presence of toxic (Cd,Se) and expensive elemental components (In, Te) is a real issue as the demand for photovoltaics rapidly increases. To overcome these limitations, there has been substantial interest in developing viable alternative materials, such as $Cu_2ZnSnS_4$ (CZTS) is an emerging solar absorber that is structurally similar to CIGS, but contains only earth abundant, non-toxic elements and has a near optimal direct band gap energy of 1.4 - 1.6 eV and a large absorption coefficient of ~104 $cm^{-1}$. The CZTS absorber layers are grown and investigated by various fabrication methods, such as thermal evaporation, e-beam evaporation with a post sulfurization, sputtering, non-vacuum sol-gel, pulsed laser, spray-pyrolysis method and electrodeposition technique. In the present work, we report an alternative aqueous chemical approach based on chemical bath deposition (CBD) method for large area deposition of CZTS thin films. Samples produced by our method were analyzed by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, absorbance and photoluminescence. The results show that this inexpensive and relatively benign process produces thin films of CZTS exhibiting uniform composition, kesterite crystal structure, and some factors like triethanolamine, ammonia, temperature which strongly affect on the morphology of CZTS film.

  • PDF