Browse > Article
http://dx.doi.org/10.5229/JECST.2017.8.3.206

Electrodeposition of SnS Thin film Solar Cells in the Presence of Sodium Citrate  

Kihal, Rafiaa (Laboratoire d'Analyses Industrielles et Genie des Materiaux, Departement de Genie des Procedes, Faculte des Sciences et de la Technologie)
Rahal, Hassiba (Laboratoire d'Analyses Industrielles et Genie des Materiaux, Departement de Genie des Procedes, Faculte des Sciences et de la Technologie)
Affoune, Abed Mohamed (Laboratoire d'Analyses Industrielles et Genie des Materiaux, Departement de Genie des Procedes, Faculte des Sciences et de la Technologie)
Ghers, Mokhtar (Laboratoire d'Etude des Surfaces et Interfaces de la Matiere Solide, Departement de Physique, Faculte des Sciences, Universite Badji Mokhtar Annaba)
Publication Information
Journal of Electrochemical Science and Technology / v.8, no.3, 2017 , pp. 206-214 More about this Journal
Abstract
SnS films have been prepared by electrodeposition technique onto Cu and ITO substrates using acidic solutions containing tin chloride and sodium thiosulfate with sodium citrate as an additive. The effects of sodium citrate on the electrochemical behavior of electrolyte bath containing tin chloride and sodium thiosulfate were investigated by cyclic voltammetry and chronoamperometry techniques. Deposited films were characterized by XRD, FTIR, SEM, optical, photoelectrochemical, and electrical measurements. XRD data showed that deposited SnS with sodium citrate on both substrates were polycrystalline with orthorhombic structures and preferential orientations along (111) directions. However, SnS films with sodium citrate on Cu substrate exhibited a good crystalline structure if compared with that deposited on ITO substrates. FTIR results confirmed the presence of SnS films at peaks 1384 and $560cm^{-1}$. SEM images revealed that SnS with sodium citrate on Cu substrate are well covered with a smooth and uniform surface morphology than deposited on ITO substrate. The direct band gap of the films is about 1.3 eV. p-type semiconductor conduction of SnS was confirmed by photoelectrochemical and Hall Effect measurements. Electrical properties of SnS films showed a low electrical resistivity of $30{\Omega}cm$, carrier concentration of $2.6{\times}10^{15}cm^{-3}$ and mobility of $80cm^2V^{-1}s^{-1}$.
Keywords
Tin sulfide; Sodium citrate; Electrodeposition; Cyclic voltammetry; Thin films;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Ghazali, Z. Zainal, M. Z. Hussein and A. Kassim, Solar Energy Mater and Solar Cells, 1998, 55(3), 237-249.   DOI
2 S. M. Sze and K. K. Ng, Physics of semiconductors devices, 3th Ed., John Wiley and Sons, Hoboken, New Jersey, (2007) 719.
3 S. Cheng, Y. He and G. Chen, Mater. Chem. Phys, 2008, 110(2), 449-453.   DOI
4 M. Ichimura, K. Takeuchi, Y. Ono and E. Arai, Thin Solid Films, 2000, 361-362, 98-101.   DOI
5 B. Ghosh, S. Chowdhury, P. Banerjee and S. Das, Thin Solid Films, 2011, 519(10), 3368-3372.   DOI
6 N. K. Reddy and K. T. R. Reddy, Solid. State. Electronics, 2005, 49(6), 902-906.   DOI
7 S. C. Ray, M. K. Karanjai and D. D. Gupta, Thin Solid Films, 1999, 350(1), 72-78.   DOI
8 T. Shrividhya, G. Ravi and T. Mahalingam, Int. J. ChemTech Res., 2014, 6(6), 3382-3384.
9 M. Kul, Vaccum, 2014, 107, 213-218.   DOI
10 S. Cheng, Y. He, G. Chen, E. C. Cho and G. Conibeer, Surf. Coating. Tech., 2008, 202(24), 6070-6074.   DOI
11 S. Cheng, Y. Chen, C. Huang and G. Chen, Thin Solid Films, 2006, 500(1), 96-100.   DOI
12 M. Gunasekaran and M. Ichimura, Solar Energy Mater and Solar Cells, 2007, 91(9), 774-778.   DOI
13 P. Sinsermsuksakul, J. Heo, W. Noh, A. S. Hock and R. G. Gordon, Adv. Energy. Mater, 2011, 1(6), 1116-1125.   DOI
14 H.Y. He, J. Fei and J. Lu, Mater. Sci. Semiconductor. Proc., 2014, 24, 90-95.   DOI
15 M. Z. Iqbal, F. Wang, M. Y. Rafique, S. Ali, M. H. Farooq and M. Ellahi, Mater. Lett, 2013, 106, 33-36.   DOI
16 P. Balaz, L. Takac, T. Ohtani, D. E. Mack, E. B. rova, V. Soika and M. Achimovicova, J. Alloys. Comp., 2002, 337, 76-82.   DOI
17 B. Ghosh, M. Das, P. Banerjee and S. Das, App. Surf. Sci., 2008, 254(20), 6436-6440.   DOI
18 F. Alam and V. Dutta, App. Surf. Sci., 2015, 358, 491-497.   DOI
19 M. G. Sousa, A. F. da Cunha and P. A. Fernandes, J. Alloys. Comp., 2014, 592, 80-85.   DOI
20 A. Tanusevski and D. Poelman, Solar Energy Mater and Solar Cells, 2003, 80(3), 297-303.   DOI
21 N. Revathi, S. Bereznev, J. Lehner, R. Raksmaa, M. Safonova, E. Mellikov and O. Volobujeva, Materials and Technology, 2015, 49(1), 149-152.
22 S. Cheng, G. Chen, Y. Chen and C. Huang, Opt. Mater., 2006, 29(4), 439-444.   DOI
23 Z. Zainal, S. Nagalingam and T. M. Hua, J. Mater Sci: Mater. Electronics, 2005, 16(5), 281-285.   DOI
24 M. Bouroushian, T. Kosanovic, D. Karoussos and N. Spyrellis, Electrochim. Acta, 2009, 54(9), 2522-2528.   DOI
25 Y. Lai, F. Liu, Z. Zhang, J. Liu, Y. Li, S. Kuang, J. Li and Y. Liu, Electrochim Acta, 2009, 54(11), 3004-3010.   DOI
26 H. M. M. N. Hennayaka and H. S. Lee, Thin Solid Films, 2013, 548, 86-90.   DOI
27 D. Pottier and G. Maurin, J. App. Electrochem., 1989, 19(3), 361-367.   DOI
28 M. C. F. Oliveira, M. Azevedo and A. Cunha, Thin Solid Films, 2002, 405(1), 129-134.   DOI
29 Y. Cui, S. Zuo, J. Jiang, S. Yuan and J. Chu, Solar Energy Mater and Solar Cells, 2011, 95(8), 2136-2140.   DOI
30 I. Sisman and H. Oz, Electrochim Acta, 2011, 56(13), 4889-4894.   DOI
31 M. Sharon, M. S. K. S. Ramaiah, M. Kumar, M. N. Spallart and C. L. Clement, J. Electroanal Chem., 1997, 436(1-2), 49-52.   DOI
32 C. Han, Q. Liu and D. G. Ivey, Electrochim Acta, 2008, 53(28), 8332-8340.   DOI
33 I. Hanzu, T. Djenizian, G. F. Ortiz and P. Knauth, J. Phys. Chem. C., 2009, 113(48), 20568-20575.   DOI
34 N. R. Mathews, C. A. Chavez, M. A. C. Jacome and J. A. T. Antonio, Electrochim. Acta, 2013, 99, 76-84.   DOI
35 A. S. Aliyev, M. E. Rouby, M. T. Abbasov and A. S. Suleymanov, Nanoscience and Nanotechnology: An International Journal, 2013, 3(3), 60-64
36 N. R. Mathews, Solar Energy, 2012, 86(4), 1010-1016.   DOI
37 Z. Zainal, M. Z. Hussein and A. Ghazali, Solar Energy Mater and Solar Cells, 1996, 40(4), 347-357.   DOI
38 K. Anuar, W. T. Tan, M. S. Atan, M. Sc, K. Dzulkefly, SM. Ho, M. Sc, H. Md. Jelas and N. Saravanan. Pacific J Sci and Tech, 2007, 8(2), 252-260.
39 A. J. Bard, L. R. Faulkner, Electrochemical methods, fundamentals and Applications, 2nd Ed., John Wiley & sons, Inc, New York, 2000.
40 M. A. M. Ibrahim and R. M. A. Radadi, Int. J. Electrochem. Sci, 2015, 10, 4946-4971.
41 L. K. Khel, S. Khan and M. I. Zaman, J. Chem. Soc. Pak., 2005, 27, 24-28.
42 J. Henry, K. Mohanraj, S. Kannan, S. Barathan and G. Sivakumar, Eur. Phys. J. Appl. Phys, 2013, 61, 10301-10304.   DOI
43 Y. Yongli and C. Shuying, J. Semiconductors, 2008, 29(12), 2322-2325.
44 Y. Xu, A. Al-Salim and R. D. Tilley, Nanomaterials., 2012, 2(1), 54-64.   DOI
45 J. J. M. Vequizo, M. Yokoyama, M. Ichimura, and A. Yamakata, Appl. Phy. Exp., 2016, 9(6), 067101.   DOI
46 N. Revathi, S. Bereznev, J. Iljina, M. Safonova, E. Mellikov and O. Volobujeva, J. Mater. Sci: Mater. Electr., 2013, 24, 4739-4744.   DOI
47 M. Steichen, R. Djemour, L. Gutay, J. Guillot, S. Siebentritt and P. J. Dale, J. Phys. Chem C, 2013, 117(9), 4383-4393.   DOI