• Title/Summary/Keyword: dipole-dipole interaction

Search Result 114, Processing Time 0.029 seconds

Separation of Neutral Molecules by the Dipole Force of a Focused Nonresonant Laser Pulse (집광된 비공명레이저펄스의 쌍극자힘에 의한 중성 분자들의 분리)

  • Zhao, Bum-Suk;Lee, Sung-Hyup. Chung, Hoi-Sung;Hwang, Sun-Gu;Kang, Wee-Kyung;Chung, Doo-Soo
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.272-273
    • /
    • 2001
  • We demonstrate the first separation of neutral molecules using optical forces. Unlike laser atomic cooling or optical tweezers, optical separation technique requires the manipulation of only one component of the molecular motion. Thus the mixtures can be separated, in principle, with less complex schemes. When an Intense nonresonant laser beam is focused onto a beam of molecules, the interaction between the laser electric field and the induced dipole moment of a molecule invokes a mechanical force on the molecule proportional to the field gradient and the molecular polarizability ($\alpha$) to mass (m) ratio $\alpha$/m. (omitted)

  • PDF

Non Darcy Mixed Convection Flow of Magnetic Fluid over a Permeable Stretching Sheet with Ohmic Dissipation

  • Zeeshan, A.;Majeed, A.
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.153-158
    • /
    • 2016
  • This paper aims to discuss the Non Darcy boundary layer flow of non-conducting viscous fluid with magnetic ferroparticles over a permeable linearly stretching surface with ohmic dissipation and mixed convective heat transfer. A magnetic dipole is applied "a" distance below the surface of stretching sheet. The governing equations are modeled. Similarity transformation is used to convert the system of partial differential equations to a system of non-linear but ordinary differential equations. The ODEs are solved numerically. The effects of sundry parameters on the flow properties like velocity, pressure, skin-friction coefficient and Nusselt number are presented. It is deduced the frictional resistance of Lorentz force decreases with stronger electric field and the trend reverses for temperature. Skin friction coefficient increase with increase in ferromagnetic interaction parameter. Whereas, Nusselt number decrease.

Analysis of the Wettability of Partially Fluorinated Polymers Reveals the Surprisingly Strong Acid-Base Character of Poly(vinylidene Fluoride)

  • Lee, Sang-Wha;Park, Joon-Seo;Lee, T. Randall
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.41-48
    • /
    • 2011
  • The wettabilities of the partially fluorinated polymers (ethylene-tetrafluoroethylene copolymer (ETFE), ethylenechlorotrifluoroethylene copolymer (ECTFE), and poly(vinylidene fluoride) (PVDF)) were investigated by contact angle measurements. Zisman plots for ETFE and ECTFE exhibited linear relationships, while the Zisman plot for PVDF showed a slight curvature, which was interpreted to indicate strong non-dispersive interactions between the surface and the contacting liquids. The Lifshitz-van der Waals forces of the fluoropolymers were estimated to increase in the order of ETFE < PVDF $\ll$ ECTFE. An evaluation of the polar or "acid-base" interaction energies showed that PVDF, which possesses the most acidic hydrogens among the examined fluoropolymers, has the strongest acid-base interactions.

Laser Cooling and Pumping of Multilevel Atoms (다준위 원자의 레이저 냉각 및 펌핑)

  • Jang, Soo;Kwon, Taek-Yong;Lee, Ho-Sung;Minogin, V.G.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.64-66
    • /
    • 2000
  • Theoretical foundations of atom dynamics in laser fields are reviewed in relation with applications to laser spectroscopy, control of atomic motion, atom traps and frequency standards. Quasiclassical kinetic equations are applied to multilevel atomic schemes interacting with counter-propagating laser waves to describe the properties of atomic populations and coherence and the time evolution of atomic distribution function. Basic types of the dipole radiation forces on atoms are discussed for the realistic cases of multilevel dipole interaction schemes such as 3(g)+5(e), 3(g)+3(e), 5(g)+3(e), 5(g)+7(e), 3(g)+3(e)+5(e) and 1(g)+3(g)+3(e)+5(e).

  • PDF

Dipole Moments of the OH, OH$^+$, and OH$^-$Valence States by ab initio Effective Valence Shell Hamiltonian Method

  • Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.2
    • /
    • pp.101-105
    • /
    • 1988
  • The ab initio effective valence shell Hamiltonian method, based on quasidegenerate many-body perturbation theory, is generalized to calculate molecular properties as well as the valence state energies which have previously been determined for atoms and small molecules. The procedure requires the evaluation of effective operator for each molecular property. Effective operators are perturbatively expanded in powers of correlation and contain contributions from excitations outside of the multireference valence space. To demonstrate the validity of this method, calculations for dipole moments of several low lying valence states of OH, $OH^+$, and $OH^-$ to first order in the correlations have been performed and compared with configuration interaction calculations.

A Study on Spin-Lattice Relaxation of Methyl Protons in 2,6-Dichlorotoluene and N-Methyl Phthalimide

  • Lee, Jo-Woong;Lim, Man-Ho;Rho, Jung-Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.47-51
    • /
    • 1991
  • Spin-lattice relaxation of methyl protons in 2,6-dichlorotoluene and N-methyl phthalimide, each dissolved in CDCl$_3$, has been studied at 34$^{\circ}$C and the contribution from spin-rotation interaction to the relaxation process has been separated from that due to dipole-dipole interactions among methyl protons. The results show that the spin-rotational contributions to the initial rate of relaxation in 2,6-dichlorotoluene and N-methyl phthalimide amount to 18 and 31%, respectively, of the total relaxation rate at 34$^{\circ}$C. The method of separating the spin-rotational contribution from that of dipolar interactions adopted in this paper is based on the well known fact that in an A$_3$ spin system such as methyl protons in liquid phase dipolar relaxation mechanism gives non-exponential decay of the z-component of total magnetization of protons while the random field fluctuation such as spin-rotational mechanism causes exponential decay.

Single Crystal EPR Spectra of $K_{12}[As_2W_18O_{66}Cu_3(H_2O)_2]{\cdot}11H_2O$, a Copper(II) Trimer

  • Jo, Yeong Hwan;So, Hyeon Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.243-248
    • /
    • 1995
  • Single crystal EPR spectra of K12[As2W18O66Cu3(H2O)2]${\cdot}$11H2O exhibit an orientation-dependent fine structure of an S = 3/2 system which is accounted for by the exchange and magnetic dipole interactions among the three Cu2+ ions. The hyperfine structure and the lines from the S = 1/2 manifolds have not been observed. The isotropic exchange parameters determined from the magnetic susceptibility data at 5-300 K are J1 = J2 =-7.8 cm-1. The magnitude of J values suggests that the unpaired electrons on three Cu2+ ions interact through a sequence of six bonds involving two tungsten atoms and three oxygen atoms. The Cu-Cu distance, 4.37 $\AA$, determined from the EPR spectra is considerably smaller than the value from the X-ray crystal structure determination, 4.76 $\pm$ 0.03 $\AA$, indicating that the point-dipole model underestimates the dipolar interaction.

Effects of Light Pulse Intensity and Quencher Concentration on the Time-Dependent Fluorescence Quenching Kinetics

  • Yang Mino;Lee Sangyoub;Shin, Kook Joe;Choo Kwang Yul;Lee Duckhwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.325-331
    • /
    • 1992
  • By using the general theoretical framework proposed recently for treating the fluorescence quenching kinetics, we investigate the effect of light pulse intensity on the decay of fluorescence which follows excitation of fluorophors by the light pulse of very short but finite duration. It is seen that conventional theory breaks down when the exciting light pulse has a pulse width comparable to the fluorescent lifetime and its intensity is very high. We also find that even when the light intensity is not too high, conventional theory may fail in either of the following cases: (i) when the quencher concentration is high, (ii) when there is an attractive potential of mean force between the fluorophor and quencher, or (iii) when the energy transfer from the fluorophor to the quencher may also occur at a distance, e.g., via dipole-dipole interaction. The validity of the predictions of the present theory may thus be tested by fluorescence quenching experiments performed under such situations.

Photoluminescence Properties of $Eu^{3+}-Activated\;YCa_3(GaO)_3(BO_3)_4$ phosphor

  • Lee, Dae-Won;Kwak, Chung-Heop;Jung, Ha-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1360-1363
    • /
    • 2006
  • A borate compound was adopted as new host material for $EU^{3+}$ activator. The $Eu^{3+}-doped\;YCa_3(GaO)_3(BO_3)_4$ (YCGB) phosphors were successfully synthesized. Also, their photoluminescence properties under the excitation of UV ray were measured. In the XRD patterns of the synthesized powders, most peaks were well-matched to a gaudefroyite phase. The emission of $Eu^{3+}$ in YCGB consists of a strong peak centered at 622 nm, which is attributed to $^5D_O-^7F_2$ transition of $Eu^{3+}$ and several weak peaks at near the wavelength. Optimum $Eu^{3+}$ concentration of the red phosphor under the excitation with the wavelength of 395 nm was about 75 mol%. This indicates that the red phosphor has a relatively higher critical concentration than that of the other $Eu^{3+}-doped$ phosphors. The dominant interaction character of $Eu^{3+}$ might be dipole-dipole interaction.

  • PDF

DYNAMICAL MAGNETIC PROPERTIES OF IRON-NITRIDE MAGNETIC FLUIDS

  • Mamiya, H.;Nakatani, I.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.815-818
    • /
    • 1995
  • Ac susceptibility of iron-nitride magnetic fluids with various particle number densities was measured. Therelaxation time increases rapidly as the temperature decreases or the inter-particle interaction increases. The analysis of the data suggests that the activation energy is proportional to ${(k_{B}T/J_{typ})}^{\alpha}$ with $\alpha$~-0.24 in the lower temperature range in which the thermal energy is comparable to the magnetic dipole interaction.

  • PDF