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By using the general theoretical framework proposed recently for treating the fluorescence quenching kinetics, we 

investigate the effect of li용ht pulse intensity on the decay of fluorescence which follows excitation of fluorophors 

by the light pulse of very short but finite duration. It is seen that conventional theory breaks down when the exciting 

light pulse has a pulse width comparable to the fluorescent lifetime and its intensity is very high. We also find 

that even when the light intensity is not too high, conventional theory may fail in either of the following cases: 

(i) when the quencher concentration is high, (ii) when there is an attractive potential of mean force between the 

fluorophor and quencher, or (iii) when the energy transfer from the fluorophor to the quencher may also occur 

at a distance, e.g., via dipole-dipole interaction. The validity of the predictions of the present theory may thus be 

tested by fluorescence quenching experiments performed under such situations.

Introduction

There have been many studies of the quenching of fluores­

cence from both experimental1'10 and theoretical perspec­

tives11'21. In many experiments2-8, fluorescent m시ecules are 

produced by a light pulse of short duration and the decay 

of fluorescence intensity from the sample is followed as a 

function of time. In this paper, we re-examine the various 

factors which affect the fluorescence decay curve.

We assume that the fluorescence quenching kinetics can 

be described by the following reaction scheme11:

F
D + hve----- (excitation of fluorophors) (1.1)

Z>*—垃tD 노 h* (fluorophors) (1.2)

D*—흐흐—D (nonradiative unimolecular decay) (1.3)

D*^-A—您-曷+」4 (bimolecular quenching) (1.4)

In these equations, Ft kFi kNRi and kQ represent the rate con­

stants of the respective processes, kp and kNR may be c아isi- 

dered to be independent of time, and their sum, denoted 

hereafter by 如，can be determined experimentally as the 

inverse of the fluorescent lifetime x0 in the absence of quen­

cher; th가 is,

kF+kNR=ks=To-1 (1.5)

F in Eq. (1.1), denoting the transition probability per unit 

time, depends on the intensity of radiation and thus varies 

with time in general. The bimolecular quenching rate coeffi­

cient kQ in Eq. (1.4) depends on the distribution of the quen­

cher molecules A around Z>*. When the relative diffusion 

between D* and A is slow, this distribution deviates from 
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the equilibrium one and varies with time, and so does the 

bimolecular quenching coefficient &.

An important aspect of fluorescence quenching that is ne­

glected in the above reaction scheme is the static quenching 

mechanism1,214 which involves a formation of complex:

D+A= DA (1.6)

Although in some cases this mechanism can play an essential 

part in determining the dependence of fluorescence quen­

ching kinetics on the quencher concentration, we will neglect 

it for simplicity in the present work.

According to the reaction scheme given by Eqs. (1.1)-(1.4), 

the time-dependence of the concentration (number density)of 

D* molecules will obey the following phenomenological rate 

law:

으 m = -km +F(t)[D] 冒 (1.7)

where [D] and [£>*] denote the number densities of D and 

D* molecules at time, tr respectively, and C： is the number 

density of A molecules that is essentially constant in time. 

By solving this differential equation, we obtain

= 【：F(r) exp[-为(亏)

T자?랴!那 i)] (1.8)

where C% is the total number density of D molecules. That 

is, Cp—+ The above expression for [Z>*] is, how­

ever, only formal. We will see below that Ff), being a func­

tional of the nonequilibrium pair distribution of A molecules 

around Z>*, depends on the history of [D*] variation.

The time-dependence of [D*] may also be expressed 

as

京t) (1.9)

Jo
Here, F(래力]di gives the number of D* molecules generated 
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in a unit volume between times r and x+dx, and G(t, t) 

denotes the probability that a Z)* molecule excited at time 

t remains in the excited state at time t. This is an exact 

expression. In conventional theories11, however, it is assumed 

that each D* molecule which has been just excited is sur­

rounded by an equilibrium distribution of A molecules and 

that the A molecule distribution around each D* follows the 

same time evolution thereafter. This means that the decay 

probability of D* depends only on the time elapsed after 

excitation regardless of when the excitation occurred. That 

is, G(r, 0 in Eq. (1.9) is approximated11,20 as

G(t,

exp[-ks(t-T)-CAJo 血q5(ti)] (1-10) 

where 左*%门)is the quenching rate coefficient obtained for 

the initial condition that each D* molecule created at Ti —0 

is surrounded by an equilibrium distribution of A molecules. 

Consequently, it is different from 如(더) in Eq. (18).

In most analyses of experimental data1"8, one goes one 

step further by assuming that and thus re­

mains nearly constant in time; that is, [D] Then Eq. 

(1.9) gives

exp[-^-r)一GJ；'妬磴(讪 (1.11)

Comparison of Eq. (1.11) with Eq. (1.8) shows clearly that 

the validity of Eq. (1.11) is limited by the condition that 

F(r)=0. That is, the intensity of illumination which excites 

D molecules ought to be weak to ensure that [£>*]< [2)1 

One may also question the validity of the approximation 

made in Eq. (1.10). The assumption that each D* molecule 

which has been just excited is surrounded by an equilibrium 

distribution of A molecules can be true if the D* molecule 

has been excited for the first time or re-excited after uni- 

molecular radiative or nonradiative decay as represented by 

Eq. (1.2) or Eq. (1.3). However, if the re-excited D* molecule 

was quenched recently by the bimolecular process [Eq. (1. 

4)1 it will still see, on the average, more A molecules in 

their vicinity than the equilibrium distribution. For such 부 

molecules, the decay law would be different from that given 

by Eq. (1.10). The opportunity of repeated excitations grows 

with increases in the intensity and time width of light pulse, 

and the fraction of D* molecules re-excited after bimolecular 

quenching rather than after unimolecular decay increases 

as the quencher concentration increases. Hence, the conven­

tional theories of fluorescence quenching11 are expected to 

break down in such situations.

In the previous works22-23, we proposed a general theoreti­

cal formalism that is free of the above mentioned limitations 

in conventional theories, and applied it to investigate the 

effects of quencher on the intensity of fluorescence stimula­

ted by steady-state illumination. In the present work, we 

study the consequences of the formalism in the analysis of 

time-resolved fluorescence decay data. In the next section, 

we first present relevant kinetic equations to describe the 

quenching dynamics. A numerical procedure to solve the ki­

netic equations is then described, and the results are com­

pared with the prediction of conventional theories. The final 

section concludes the present work.

Kinetic Equations

In a previous work12, starting from a hierarchical system 

of many-body Smoluchowski equations for the reactant dis­

tribution functions24, we derived the following r가e law that 

is expected for the reaction scheme represented by Eqs. (1. 

D-(1.4):

으 [D*] = -紗*] +F(g] -加(g*兀如 (2.1)

In the derivation, we were able to show that the time-depend­

ent bimolecular quenching rate coefficient can be evaluated 

from the following expression:

如。)=伍 4nr2S(r)pAir(^ t). (2.2)

Here, S(r) is the sink function which describes the rate of 

quenching of a D* molecule when there is an A molecule 

at the separation of r. pu尸is the nonequilibrium pair 

distritmtion function; 4nr2</rp?u)*(nOD4] is the number of A 

molecules located, on average, in a spherical shell of thick­

ness dr at a distance r from a D* m이ecule at time t.

For t>0, when the radiation is turned on, the kinetic equa­

tion governing the time evolution of Pad•(而 is given22 by

옥 由 Pq•心)-S(尸)y 心)

+FO黑* [pe(”)(2.3)

Here, is the Smoluchowski operator for the relative 

motion of D* and A and its explicit form is given by

f = ( ~~ + 号)£如*(尸)[-多 0广(尸)] (2.4)

where 此妃«) is the diffusion coefficient, which depends on 

r if the hydrodynamic interaction between D* and A is to 

be included, and Uad^(T)is the potential of mean force, p =1 

腿T with the Boltzmann constant ks and the absolute 

temperature T. If UM” has a very steep potential wall at 

r=a, pAD*(rti) must satisfy the reflecting boundary condition,

{d")[으 + 0专 以씨=0 (2.5)

On the other hand, as r goes to infinity, approaches 

unity:

lim Pad*M=1 (2.6)r—*oo

The initial condition for pMH) that corresponds to usual 

experimental conditions is

pAD-(rt t=0)=exp[ - ptZw(r)] (2.7)

The kinetic equation for p4P*(nO in Eq. (2.3) involves an­

other nonequilibrium pair distribution function, Pq化 f), 

which gives the correlation in the distribution of A and 

ground state D molecules. The kinetic equation governing 
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the evolution of pxp(nO for t>0 is given22 by

으 Pad(kD = Pad(T, 0+S (r)

rn*n
+ l万了 [必+时以気][伽尸(*) 一 Pe(#)]

(2.8)

where C? is 산)e number of A molecules, i.e., Ca=Na/V=[A] 
+ D4*] = L4] with the number of quencher molecules Na 
and the volume V of the solution. The Smoluchowski opera­

tor Lda for the r이ative motion of D and A has the same 

structure as Ld*a in Eq. (2.4), and the boundary and initial 

conditions for are also similar to those or pe化t)

in Eqs. (2.5)-(2.7).

Eqs. (2.1), (2.2), (2.3), and (2.8) constitute the set of integro­

differential equations to be solved for the four unknowns, 

[D*]f 知。)，is心)，and p⑭(r,t). We assume that kSi F, and 

S(r) are known from quantum mechanical calculations or in­

dependent experiments.

Howevpr, if the potential of mean force between D* and 

A does not differ much from that between D and A [ie, 

if [/Az)»(r)=C/AD(r)l the problem can be simplified greyly. 

In such cases, we have

["叮 P^(m)+MPQ(")=(方g⑵(分 (2.9)

where Cd denotes the number density of D molecules includ­

ing both the excited and the ground state molecules (i.e., 

C3 = M + [Z)*]), and g⑵(?)is the equilibrium radial distri­

bution function between D and A,

g⑵")=exp[ 一仅扁仞]主expE 一阳心⑺] (2.10)

With the relation, Eq. (2.9), Eq. (2.3) becomes decoupled from 

Eq. (2.8) to give

-으 P#서")。3展应尸(崩-齢)哄・(崩

+ {/紀)鸟/代)*가成2)(尸)一伽尸(驾切 (2.11)

Hence, only this equation together with Eqs. (2.1) and (2.2) 

has to be solved to obtain reaction kinetic information. Here­

after, we will restrict our discussion to this situation.

Numerical Procedure
We describe a numerical procedure to solve the coupled 

integro-differential equations, the set of Eqs. (2.1), (2.2), and 

(2.11). We first transform the real time variable t into a sca­

led time variable r into a scaled time variable t:

x—t/D (3.1)

where D is the relative diffusion coefficient assumed to be 

a constant with the neglect of hydrodynamic interactions be­

tween D* and A. We then discretize the continuous time 

domain with sufficiently small time step, Ar, At each time 

step, we integrate Eq. (2.11) subject to the boundary condi­

tions, Eqs. (2.5) and (2.6), by using the Crank-Nicholson finite 

difference ^heme^. The trial value of LZ)*] is estimated 

from the following approximate differnce equation obtained 

from Eq. (2.1):

凹늠我棉+—므스爵鍔战 

丄十2$ 4.丄十Aj丿
(3.2)
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Here, the subscript j denotes the /th time step in time evolu­

tion [e.g.t Fj denotes the value of F(t) at and

为三 D△니处十(4+i+»)/2+G(知j+i+知j)/2}/2. (3.3)

For the first step, j=0r the trial value is obtained 

from Eq. (3.2) with the zeroth order estimate for Rg given 

by

如三&.°=岭寸4苛S(，泌华). (3.4)

Then, this value of is used to calculate pi(r) from 

Eq. (2.11); p仞 denotes Pad*(^^=；At). The resulting pi(r), 

substituted into Eq. (2.2), gives a refined value for 知，which 

is turn gives a better estimate for from Eq. (3.2). This 

iterative procedure is continued until the relative change 

in the value of becomes less than a relative error 

parameter, the value of which is taken to be 1.0 X10-8 in 

all calculations reported in this paper.

The same iterative procedure is applied to each time step. 

That is, the zeroth order estimate for is obtained from 

Eq. (3.2) with the approximation, 临야qt Then, this value 

of is used to obtain better estimates for p；(r) and 为 

ans so on.

Meanwhile, a direct integration of Eq. (2.11) to get the 

pair distribution function ps poses a problem. Since the 

diffusion space in the radial direction is partitioned into a 

discrete grid in the finite difierence scheme, the outer bound­

ary extended to infinity has to be truncated at a finite sepa­

ration. To reduce the numerical error due to the truncation, 

one has to keep as many grid points as possible to ensure 

sufficient spatial extension of integration range. But this co­

sts large computing time.

To avoid this difficulty, we introduce a nonlinear transfor­

mation of the spatial variable given by

x=exp{ 一入[(〃”)一 1]} (3.5)

where X is a positive parameter which may be optimized. 

The optimized value of X depends on the curvature of pair 

distribution function in the vicinity of molecular collision sur­

face. M decreases with the magnitude of the curvature. With 

this transformation, Eq. (2.11) becomes

案 = <做"+0己出阿一 -了으赢 +l}p，+ [a아旳

+ (1- 5으忌 )까—〃{S8)+Y(하]p+Dy(滲〉(3.6) 

where a=(W)/ot and y(t)=F(t) Cp/[Z>*1 The prime denotes 

the differentiation with respect to x.

The sink function S(r) is divided into two parts, a colli­

sional term Sc«) and a long-ranged interaction terms S〃). 

Imposing the reflecting boundary condition in Eq. (2.5) toge­

ther with the collisional sink function given by

Sc(r) = Kc8(r 一 a)//4no2 (3.7)

is equivalent to imposing a radiative boundary condition gi­

ven by

[p，+ (阿+ 畫)pL=。 (3.8)

where kD= 4noD12. In these equations, kc measures the quen­
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ching rate at contact radius. In numerical calculation, it is 

more convenient to use the radiative boundary condition. 

Hence we use Eq. (3.6) with 5(r) replaced by and the 

radiative boundary condition given by Eq. (3.8). The outer 

boundary condition and the initial condition are as given 

by Eqs. (2.6) and (2.7), respectively.

In the finite difference scheme25 the transformed diffusion 

space (l>x>0) is partitioned by N grid posits, and the conti­

nuous pair distribution function p (r,r) is approximated by 

a discrete column vector R as

「为1

R= Pi3 (3.9)

-Pi,N-

where the subscript i denotes the :th time step with Z=!'At, 

and Pij is the value of the pair distribution function at the 

;th grid point at the time t. With this discretization, Eq. (3.6) 

with the associated boundary conditions is equivalent to

A ・ Pz=B - R+G (3.10)

Here (7 is a column vector having N components, and A 

and B are the NXN tridiagonal matrices having the following 

components:

A-u= 一狀也句2/2毎一硕舫)/2},

A订=1+龙(乂加)2/2{2好一 q+i/2)},

&+口=一4-“—辰辺/(丁)絃

•Bi-侦——4-侦

B订=2—A希

Bj+ij ——」%+侦

for 2 MWN—1, and

血.1=2狀辺/。)2/2{2好 一△普g(#i, Tj+V2)}

T(辺句2/2毎+51)/아

务1=2—血.1,

•位丄=

An-\n=-顺加)2/2{成-△顼*n)/2},

Awv=1+照玖)2/2{獄一&食京+1/2)

娇+△切由)/2 ? 
1+Ax- X °

Bn-、n= —An—、n,

Bn、n=2lAn,n

where

h^Ar/Ar2,

9

a—/nx 1

9
攻，9+浦ml邱/+(1-飞 七-)伉门

大一!nx

一成/(说))[&B)+(Y2i+Yj)/2],

Table 1. Comparison of the Numerical Results for the Steady­

state Value of [D*] Under Steady Illumination with the Exact 

Result.

G奶 F
Log 曲*]

Exact Numerical

0.05 0.1 ks 一 5.384 -5.383

0.05 1.0 ks -4.538 一 4.537

0.10 0.1 ks -5.619 -5.616

0.10 1.0 ks -4.722 -4.720

0.30 0.1 ks -6.171 -6.166

0.30 1.0 ks -5.208 -5.203

0.50 0.1 ks -6.494 -6.486

0.50 1.0 ks -5.513 一 5.505

y•턔。+W지M

Ar= W+l).

The elements of vector G are

Gi = C(q+1/2WS) + h(k D/a)2{xl - △切*i)/2},

G = C(q+u2沮⑵化)(MiMV)

where C(亏+1/2)드»2虹[方+1 + 汚]/2. Here, the prime denotes 

the derivative with respect to x. The matrix equation, E이. 

(3.10), determines the time evolution of the pair distribution 

function.

To test the accuracy of the present algorithm, we compare 

long-time results of the numerical calculation with the exact 

results for the steady state concentration of excited donor 

molecules under steady illumination. The latter has been 

obtained analytically in our previous work22. The results are 

presented in Table 1, which shows that the accuracy of the 

numerical calculation is good enough.

Model Calculations

We now examine the consequences of the present theory 

through model calculations. For simplicity the intensity vs. 

time profile of the light pulse is assumed to be given by 

a function of the form

F(t)=0〃圮 exp[ - M —1)/4] (4.1)

The other motional and reaction parameters used in the mo­

del calculations are as follows: 7'=25t,羸=応1=38.5 ns, a= 
9.1 kt Z>=5.0X10~7 cm2s~1 and 蜘=6X1 이。LmoLsT = lX 

IO-10 cm3s-1.

Effect of Light Pulse Intensity on Fluorescence 
Decay Curves. Figure 1 displays the effect of ligh pulse 

intensity on the fluorescence decay curves. For the moment 

we neglect the interaction potential Uad心)and the long- 

ranged sink terms Si(r). The quencher concentration Ca has 

the set equal to 0.1 M. The parameter 左 for the light pulse 

width appearing in Eq. (4.1) has been set equal to 10 ns

Both the excitation function F(f) and the fluorescence inte­

nsity function I(f\ which is proportional to [Z)*], increase 

as the light intensity parameter Fo increases from 0.001 ks 

to 10 ks. However, it is the shape of the fluorescence decay 

curve rather than the absolute magnitude of the fluorescence
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Figure 1. Effect of light pulse intensity on fluorescence de­

cay curves. /(t)= with denoting the peak

concentration of D*. The dotted curve represents the excita­

tion function logmLFWS. Values of model parameters used 

are described in the text.

time in ns

Figure 2. Variation of with time when the intensity 

of light pulse is low. The vartical scale has no meaning for 

the time profile of excitation function k)gio[F0)/F。]； it has 

been shifted such that its peak value matches with the peak 

value of [D*]. Values of model parameters used are descri­

bed in the text.

intensity that is usually observed in experiments. Hence, in 

Figure 1 the fluorescence intensity curve for each Fo value 

has been scaled such that 1(f) — with 0)*]”心

denoting the peak concentration of D* at the given Fo value. 

We note that the time at which I(t) becomes maximum shifts 

to a shorter time as Fo increases.

Comparison with the Conventional Smoluchowski 
Theory. As mentioned in the introductory section, conven­

tional theories are expected to fail when the duration of 

light pulse is not so short compared to the life time of fluo- 

rophors. The discrepancy between the predictions of the pre­

sent and conventional theories will be amplified with increa­

ses in the light intensity and in the quencher concentration. 

Indeed, these expectations are observed to be real and the 

discrepancy between the results of the present and conven­

tional theories is discernible on the quantitative scale.

Results in the Case When Uad*(>*)=0 for r>o and 
St(r)=O. Figure 2 shows that when the quencher concen­

tration is low (Q = 0.1 M) and excitation rate of D molecules 

is small with Ftf=0.1 ks = 2.6X 106 s-1 and 左=10 ns, the de­

viation of the conventional theory from the present theory 

is negligible. However, as the intensity of light increases, 

the predictions of the conventional theory based on Eq. (1.11) 

show increasing discrepancy. Figure 3 shows a case when 

the maximum transition probability of D molecules per unit 

time, is ten times as large as ks F=2.6X108 s-1) 

with other parameters kept at the same values as in Figure

2. The dashed curve representing the result of the conven­

tional theory deviates much from the solid curve represen­

ting the result of the present theory. This deviation is largely 

due to the assumption made by the conventional theory in 

going from Eq. (1.9) to Eq. (1.11); that is, when the light 

intensity is high, the concentration of the ground-state D 

molecules cannot be considered to be constant. In case when

Figure 3. Failure of the conventional theory under high 

light intensity. Values of model parameters used are descri­

bed in the text.

the quantity measured in experiments is the variation of 

the relative intensity of fluorescence rather than the absolute 

magnitude of EZ)*1 we also present the results of the con­

ventional theory in 옹uch a way that the peak value of 

coincides with the exact one obtained from the present 

theory. Thi옹 scaled results with

{r Ty^~\convenHona^ theory ]
- £^*~y：onventional theory -\ (4.2)

are represented by the dot-dashed curve in Figure 3. How-
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Figure 4. Failure of the conventional theory under high 

quencher concentration. Values of model parameters used 

are described in the text.

Figure 5. Failure of the conventional theory in the presence 

of an attractive potential of mean force. Values of model 

parameters used are described in the text.

ever, we still note a discrepancy. In the conventional and 

the present theories, the times at which the maximum value 

of [£>*] or the maximum intensity of fluorescence occurs 

lag differently from the time at which the exciting light pulse 

peaks.

Figure 4 shows the deviation of the conventional theory 

from the present theory under higher quencher concentra­

tion (Cl = 0.5 M). Increasing the quencher concentration dec­

reases the mean fluorescent life time so that the effect due 

to the finite time-width of light pulse becomes more discer­

nible. Here, the light intensity is relativ이y low with 咒=0.1 

ks = 2.6 X106 s-1 and 左=10 ns; the maximum value of the 

fraction of D molecules excited is only 0.003. Other parame­

ters were fixed at the same values as in Figure 2. We note 

that the conventional theory predicts a slower decay of [D*] 

or the fluorescence intensity. The failure of the convention­

al theory in this case is mainly due to the approximation 

made in Eq. (1.10).

Results in the Case When Figure 5 dis­

plays the effect of an attractive Coulomb force on the quen­

ching dynamics. Except that the potential of mean force Uad* 
(r) is now given by

UAD-(r)=kBT(rc/r) for (4.3)

with 妒/£如丁= — 20.0 k(ZAe and Z时 are charges on

A and D molecules, respectively^ and e is the dielectric cons­

tant of the solvent), other parameters have the same values 

as in Figure 2. We see that in this case the conventional 

theory fails since the approximation made in Eq. (1.10) is 

inadequate. One may understand this result in terms of the 

increase in the effective value for the reaction radius. It is 

well known11 that effect of the attractive Coulomb interaction 

in diffusion-influenced reactions can be reproduced by using 

an effective reaction radius in the potential-free calculation. 

The value of the effective reaction radius,

财=rf[(l + 5任)/端今 exp(乙/a)(4.4) 

is 22.5 A in the present case. This increase in the effective 

reaction radius increases the volume fraction, 0=4爪珞《片/3, 

occupied by the quencher molecules. Since the magnitude 

of the influence of quencher concentration on the fluore­

scence quenching kinetics is gauged by this parameter 

increase in 5 results in a similar effect as the increase 

in C%

Results tn the Case When SL(r)^0. Effect of long- 

range energy transfer is shown in Figure 6. We assume that 

the long-range energy transfer occurs via the dipole-dipole 

interaction mechanism11 so that Sc(r) is given by

= 乎 (4.5)

where Ro is the critical separation for which energy transfer 

from D* to A and unimolecular decay of D* are equally pro­
bable. We set the value of Ro equal to 25 A. We have as­

sumed that Uu)*(/)=0 for and other parameters used 

are the same as in Figure 2. Again, the failure of the con­

ventional Smoluchowski theory may be explained by the inc­

rease in the effective reaction radius, which is given11 by

c _R (玲/庆舟句、(3/4) L , ,„V2/ . KM 1 
财顶 2f(574) 卩+(2时 /荷J

二 0.676(砌兀严配｛1 +1.414 exp[ - 呼U까,

(4.6)

Here, z°=(l/2)Q&Z兀p ⑵ js 난｝e gamma function, and 

KJ2) and 7vfe) are the modified Bessel functions of order 

v26. For the model calc미ation in Figure 6, the value of Geff 
is 22.7 X, and this increase in effective reaction radius re­

sults in a similar effect as the increase in the quencher con­

centration.

Concluding Remarks

We have examined the effects of light intensity and quen-
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Figure 6. Failure of the conventional theory in the presence 

of a long-range energy transfer interaction. Values of model 

parameters used are described in the text

cher concentration on the dacay of fluorescence intensity 

following an excitation of fluorophors by a light pulse with 

short but nevertheless finite time width. As expected from 

physical grounds described in the introductory section, it 

has been shown that the conventional theory breaks down 

when the intensity of exciting light pulse is very high and 

when the quencher concentration is high. We have also found 

that the presence of an attractive potential of mean force 

or a long-range energy transfer interaction between the fluo- 

rophor and quencher gives rise to a similar effect as the 

enhancement in the quencher concentration. The validity of 

the predictions of the present theory may thus be tested 

by fluorescence quenching experiments performed under 

such conditions.
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