Time-Dependent Fluorescence Quenching Kinekics

Bull. Korean Chem. Soc, Vol. 13, No. 3, 1992 325

Effects of Light Pulse Intensity and Quencher Concentration
on the Time-Dependent Fluorescence Quenching Kinetics

Mino Yang, Sangyoub Lee*, Kook Joe Shin, and Kwang Yul Choo'

Department of Chemtstry, Seoul National Universily, Seout 151-742

Duckhwan Lee

Department of Chemistry, Sogang Universily, Seowl 121-742. Received February 18, 1992

By using the general theoretical framework proposed recently for treating the fluorescence quenching kinetics, we
investigate the effect of light pulse intensity on the decay of fluorescence which follows excitation of fluorophors
by the light pulse of very short but finite duration. It is seen that conventional theory breaks down when the exciting
light pulse has a pulse width comparable to the fluorescent lifetime and its intensity is very high. We also find
that even when the light intensity is not too high, conventional theory may fail in either of the following cases:
(i) when the quencher concentration is high, (ii} when there is an attractive potential of mean force between the
{luorophor and quencher, or (i) when the energy transfer from the fluorophor to the quencher may also occur
at a distance, e.g. vig dipole-dipole interaction. The validity of the predictions of the present theory may thus be
tested by fluorescence quenching experiments performed under such situations.

Introduction

There have been many studies of the quenching of fluores-
cence from both experimental' ® and theoretical perspec-
tives" % In many experiments®-®, fluorescent molecules are
produced by a light pulse of short duration and the decay
of fluorescence intensity from the sample is followed as a
function of time. In this paper, we re-examine the various
factors which affect the fluorescence decay curve.

We assume that the fluorescence quenching kinetics can
be described by the foflowing reaction scheme!!;

D+hv, ~—F—rD’ (excitation of fluorophors) 1.1)
D*—* D+ hvp (@luorophors) (1.2)
D, p (nonradiative unimolecular decay) (1.3)
D*+A—95p+ A (bimolecular quenching  (14)

In these equations, F, kg, kyg, and &g represent the rate con-
stants of the respective processes. k¢ and kyz may be consi-
dered to be independent of time, and their sum, denoted
hereafter by &, can be determined experimentally as the
inverse of the fluorescent lifetime t, in the absence of quen-
cher; that is,

kp+hyg=hs=1,! 15)

F in Eq. (1.1), denoting the transition probability per unit
time, depends on the intensity of radiation and thus varies
with time in general. The bimolecular quenching rate coeffi-
cient %o in Eq. (1.4) depends on the distribution of the quen-
cher molecules A around D*. When the relative diffusion
between D* and A is slow, this distribution deviates from
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the equilibrium one and varies with time, and so does the
bimolecular quenching coefficient k.

An important aspect of fluorescence quenching that is ne-
glected in the above reaction scheme is the static quenching
mechanism'>" which involves a formation of complex:

D+AZ= DA (1.6)

Although in some cases this mechanism can play an essential
part in determining the dependence of fluorescence quen-
ching kinetics on the quencher concentration, we will neglect
it for simplicity in the present work.

According to the reaction scheme given by Egs. {1.1)-(1.4),
the time-dependence of the concentration (number density)of
D* molecules will obey the following phenomenclogical rate
law:

% [D*1= — k[D*]+F)DI — ko®LD*ICS n

where [D] and [D*] denote the number densities of D' and
D* molecules at time, ¢, respectively, and Cj is the number
density of A molecules that is essentially constant in time.
By solving this differential equation, we obtain

[0*]=Gyf gt Fo expl—kst—0~ [dric)
—Cif dnkota)] a8

where Cj is the total number density of D molecules. That
is, Cp=[D*]+[D]. The above expression for [D*] is, how-
ever, only formal. We will see below that #¢(?), being a func-
tional of the nonequilibrium pair distribution of A molecules
around D*, depends on the history of [D*] variation.

The time-dependence of [D*] may also be expressed
as

[D*)= [ dePDIGE, 9 a9
Here, F(r)[D]dr gives the number of D* molecules generated
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in a unit volume between times t and t+dt, and G(x, f)
denotes the probability that a D* molecule excited at time
t remains in the excited state at time Z. This is an exact
expression. In conventional theories!!, however, it is assumed
that each D* molecule which has been just excited is sur-
rounded by an equilibrium distribution of A molecules and
that the A molecule distribution around each D* follows the
same time evolution thereafter. This means that the decay
probability of D* depends only on the time elapsed after
excitation regardless of when the excitation occurred. That
is, G(t, & in Eq. (1.9) is approximated'® as

G(t, H=G(E—1)=

expl—kt—0-Cif dnFe)] (110

where %5t is the quenching rate coefficient obtained for
the initial condition that each D* molecule created at t;=0
is surrounded by an equilibrium distribution of 4 molecules.
Consequently, it is different from %¢(v) in Eq. (18).

In most analyses of experimental data'®, one goes one
step further by assuming that [D]>3[D*] and thus [D] re-
mains nearly constant in time; that is, [D] ~C3. Then Eq.
(1.9) gives

(1= aeke)
exp| — kst —v)— c',;fo- dn, @)

Comparison of Eq. (1.11) with Eq. (1.8) shows clearly that
the validity of Eq. (1.11) is limited by the condition that
F(©)=0. That is, the intensity of illumination which excites
D molecules ought to be weak to ensure that [D*]<[D].
One may also question the validity of the approximation
made in Eq. (1.10). The assumption that each D* molecule
which has been just excited is surrounded by an equilibrium
distribution of A molecules can be true if the D* molecule
has been excited for the first time or re-excited after uni-
molecular radiative or nonradiative decay as represented by
Eg. (1.2) or Eq. (1.3). However, if the re-excited D* molecule
was quenched recently by the bimolecular process [Eq. (1.
4)], it will still see, on the average, more A molecules in
their vicinity than the equilibrium distribution. For such D*
molecules, the decay law would be different from that given
by Eq. (1.10). The opportunity of repeated excitations grows
with increases in the intensity and time width of light pulse,
and the fraction of D* molecules re-excited after bimolecular
quenching rather than after unimolecular decay increases
as the quencher concentration increases. Hence, the conven-
tional theories of fluorescence quenching!! are expected to
break down in such situations.

In the previous works?®?, we proposed a general theoreti-
cal formalism that is free of the above mentioned limitations
in conventional theories, and applied it to investigate the
effects of quencher on the intensity of fluorescence stimula-
ted by steady-state illumination. In the present work, we
study the consequences of the formalism in the analysis of
time-resolved fluorescence decay data. In the next section,
we first present relevant kinetic equations to describe the
quenching dynamics. A numerical procedure to solve the ki-
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netic equations is then described, and the results are com-
pared with the prediction of conventional theories. The final
section concludes the present work.

Kinetic Equations

In a previous work®, starting from a hierarchical system
of many-body Smoluchowski equations for the reactant dis-
tribution functions®, we derived the following rate law that
is expected for the reaction scheme represented by Egs, (1.
1)-(14):

< [0°]= —h{D*1+FOID)- kD" A] )

In the derivation, we were able to show that the time-depend-
ent bimolecular quenching rate coefficient can be evaluated
from the following expression:

kold)= fdr APS@pacrlr ). @2

Here, S(r) is the sink function which describes the rate of
quenching of a D* molecule when there is an A molecule
at the separation of r. py(r#} is the nonequilibrium pair
distribution function; 4m’drpae(r,H[A] is the number of A
molecules located, on average, in a spherical shell of thick-
ness dr at a distance r from a D* molecule at time ¢.
For >0, when the radiation is turned on, the kinetic equa-
tion governing the time evolution of pw(r#) is given® by

~§; DAY= Lyon parrtid)— Spare(rid)

+F) D%]] Coastt)~ paert)] @3)

Here, L°py is the Smoluchowski operator for the relative
motion of D* and A and its explicit form is given by

Eoa=(-L +2ot{ L +p-L U @4

where dap(r) is the diffusion coefficient, which depends on
r if the hydrodynamic interaction between D* and A is to
be included, and Uy~(7) is the potential of mean force. f =1
/ksT with the Boltzmann constant kg and the absolute
temperature T. If Ugy»(¥) has a very steep potential wall at
r=0, pap(#.f} must satisfy the reflecting boundary condition,

{awe]-Z +8-L Vi) ot} _ =0 @5)

On the other hand, as » goes to infinity, psp-(#) approaches
unity:

im papr(nt)=1 (2.6)

The initial condition for pap-{f) that corresponds to usual
experimental conditions is

parri=0)=expl — U] 27

The kinetic equation for pap(nf) in Eq. (2.3) involves an-
other nonequilibrium pair distribution function, pw @D,
which gives the correlation in the distribution of 4 and
ground state D molecules. The kinetic equation governing
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the evolution of pu(r¢) for >0 is given® by
a3 —1e [D*]
ot Papl? )= Liapaplnt) +S() (D] pap-{r.2)

%] s+ EoOC L par)— potrit))

2.8)

where C4 is the number of A molecules, ie, Ci=N3/V=[A4]
+[A*]1=[A] with the number of quencher molecules N3
and the volume V of the solution. The Smoluchowski opera-
tor L34 for the relative motion of D and A has the same
structure as L§., in Eq. (2.4), and the boundary and initial
conditions for pap{rt) are also similar to those or pap{n.i)
in Eqgs. (25)2.7).

Egs. (2.1), (2.2}, (2.3), and (2.8) constitute the set of integro-
differential equations to be solved for the feur unknowns,
[D*], ko), paps(r.), and pap(rt). We assume that kg, F, and
S(r) are known from quantum mechanical calculations or in-
dependent experiments.

Howevegr, if the potential of mean force between D* and
A does not differ much from that between D and A [ie,
if Urpr(r)=Uw()]), the problem can be simplified greatly.
In such cases, we have

LD*Jpaeirty + [Dpanr.6) = Cpg¥r) (2.9)

where C}, denotes the number density of D molecules includ-
ing both the excited and the ground state molecules (ie.,
Ci=[D]+[D*]), and g?{) is the equilibrium radial distri-
bution function between D and A,

29r)=expl — BUw(V]= expl — Blaps(r)) (210

With the relation, Eq. (2.9), Eq. {(2.3) becomes decoupled from
Eq. (2.8) to give

-+

—a% Pap-(1 )= Lipapap-(r,£) — SWpap-(r,8)

+{FOC/LD* M g?P) — par)] (211)

Hence, only this equation together with Eqs. (2.1) and (2.2)
has to be solved to obtain reaction kinetic information, Here-
after, we will restrict our discussion to this situation.

Numerical Procedure

We describe a numerical procedure tc solve the coupled
integro-differential equations, the set of Eqs. (2.1), (2.2), and
(2.11). We first transform the real time variable ¢ into a sca-
led time varigble t into a scaled time variable t:

w={D &8

where D is the relative diffusion coefficient assumed to be
a constant with the neglect of hydrodynamic interactions be-
tween D* and A. We then discretize the continuous time
domain with sufficiently small time step, Ar, At each time
step, we integrate Eq. (2.11) subject to the boundary condi-
tions, Egs. (2.5) and (2.6), by using the Crank-Nicholson finite
difference scheme®. The trial value of [D*] is estimated
from the following approximate differnce equation obtained
from Eq. (2.1):

~1-X . DATCYF, 1+ F)
[D‘]jﬂ:‘l__'__‘i,; D+ 2(1+X)

3.2)
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Here, the subscript § denotes the jth time step in time evolu-
tion [e.g, F; denotes the value of F(f) at {=jA1] and

X=DAtlks+ (Fjer+ F)2+Cikoir1+Ro)/21/2.  (33)

For the first step, =0, the trial value [D*]; is obtained
from Eq. (3.2) with the zeroth order estimate for kg, given
by

ko =hao=kir=[4m S(g(r). 34

Then, this value of [D*];, is used to calculate py(») from
Eq. {2.11); pi») denotes puri(rt=fArt). The resulting pilr),
substituted into Eq. (2.2), gives a refined value for kg,, which
is turn gives a better estimate for (D*]; from Eq. (3.2). This
iterative procedure is continued until the relative change
in the value of [D*], becomes less than a relative error
parameter, the value of which is taken to be 1.0X10°% in
all calculations reported in this paper.

The same iterative procedure is applied to each time step.
That is, the zeroth order estimate for [D*]; is obtained from
Eq. (3.2) with the approximation, kqj¥k¢;-1. Then, this value
of {D*]; is used to obtain better estimates for p{r) and kg,
ans so on.

Meanwhile, a direct integration of Eq. (2.11) to get the
pair distribution function psp» poses a problem. Since the
diffusion space in the radial direction is partitioned into a
discrete grid in the finite difference scheme, the outer bound-
ary extended to infinity has to be truncated at a finite sepa-
ration. To reduce the numerical error due to the truncation,
one has to keep as many grid points as possible to ensure
sufficient spatial extension of integration range. But this co-
sts large computing time.

To avoid this difficulty, we introduce a nonlinear transfor-
mation of the spatial variable given by

r=exp{—AL6/0)— 1]} @3.5)

where A is a positive parameter which may be optimized.
The optimized value of A depends on the curvature of pair
distribution function in the vicinity of molecular collision sur-
face. A decreases with the magnitude of the curvature. With
this transformation, Eq. (2.11) becomes

2
A—inx

ﬁ = aX?p" +axxpU — +1}p'+| oPxpl”

+(1-

1—21m: w }‘D{S&Jﬂ(ﬂ}]wﬂr&w (36)

where a=(AD)/s, and y(t)=F(z) C3/[D*]. The prime denotes
the differentiation with respect to x.

The sink function Six) is divided into two parts, a colii-
sional term Sc(x) and a long-ranged interaction terms S;(x).
Imposing the reflecting boundary condition in Eq. (2.5) toge-
ther with the collisional sink function given by

Sclr)=xcbir—o)//4no? &X))

is equivalent to imposing a radiative boundary condition gi-
ven by

[+ @+ | =0 39

where kp= 4noD™, In these equations, kc measures the quen-
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ching rate at contact radius. In numerical calculation, it is
more convenient {o use the radiative boundary condition.
Hence we use Eq. (3.6) with S(x) replaced by S;(x) and the
radiative boundary condition given by Eq. (3.8). The outer
boundary condition and the initial condition are as given
by Egs. (26) and (2.7), respectively.

In the finite difference scheme® the transformed diffusion
space (1>x>0) is partitioned by N grid points, and the conti-
nuous pair distribution function p {(x,x) is approximated by
a discrete column vector P; as

P il
P;
P= P. (%) (3-9)

Py
where the subscript i denotes the ith time step with {=7/Az,
and P;; is the value of the pair distribution function at the

jth grid point at the time ¢ With this discretization, Eq. (3.6)
with the associated boundary conditions is egquivalent to

A P=B-P+G (3.10)

Here G is a column vector having N components, and A4
and B are the N XN tridiagonal matrices having the following
components:

Aiy;= —hOD/oY /28— Axfix)/2),
Aii=1+h(ADfcY/2{2— A% (x;, Teva)),
A.‘+1_f= "A,'—u—h(wfc)zx?,

Bii=—Ain,
B,;,'=2_Au'.
Bivii= —Aiii,

for 2 <i<N-1, and
Au=1+hr(OD/oy/2{26— Ar*g (5, 1))
Az1= —h(A\D/cV 218 + Axfix,)/2)
B1=2—Aw,
By =—As,
An-in= —h{AD/fo)2(xf— Axfany/2),

Aunv=1+ k(m/d)z fZ{Zt;‘\: —Ax%g(xn, G

__xat Axfay)/2 }
1+Ac- Y ’

By-ww=—An-1m,
Byn=2—Ann
where

h=Ac/Ax,
= 2
fx)=xlxpl” i T | |-

- ——Z
g(x,—, 'Cj+m)=IEIBU"+(1 A—Inx )BU]

— oY (DSt v+ 7)/2],
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Table 1. Comparison of the Numerical Resuits for the Steady-
state Value of [D*] Under Steady Illumination with the Exact
Result.

LogofD*]
Ci F
AM) Exact Numerical
0.05 014 —5.384 -5.383
0.05 10 & —4.538 ~4.537
0.10 0.1 &, —5.619 —5.616
0.10 10 & —4.722 —4.720
0.30 0.1 &, -6.171 —6.166
0.30 10 k&, —5.208 —5.203
0.50 01 %, —6.494 —6.486
0.50 10 %, —5.513 —5.505
YEBU + KC!MD:
Ar=1/N+1).

The elements of vector G are
G\ =C(tj )P+ B D/ i — Axflx)/2),
G|'=C(‘Ej+m)gm(xf) (2SfSN)

where C(tj12)=DAt[y;s1+7y,)/2. Here, the prime denotes
the derivative with respect to x. The matrix equation, Eq.
(3.10), determines the time evolution of the pair distribution
function.

To test the accuracy of the present algorithm, we compare
long-time results of the numerical calculation with the exact
results for the steady state concentration of excited donor
molecules under steady illumination. The latter has been
obtained anaiytically in our previous work®. The results are
presented in Table 1, which shows that the accuracy of the
numerical calculation is good enough.

Model Calculations

We now examine the conseguences of the present theory
through model calculations. For simplicity the intensity vs.
time profile of the light pulse is assumed to be given by
a function of the form

Fy=Ft)expl — ¢/t —1)/4] @1

The other motional and reaction parameters used in the mo-
del calculations are as follows: T=25C, t,=&;!=385 ns, 6=
9.1 &, D=50X10"7 cm’™! and k§'=6X 10" Lmol's'=1X
107" cm’s™,

Effect of Light Pulse Intensity on Fluorescence
Decay Curves. Figure 1 displays the effect of ligh pulse
intensity on the fluorescence decay curves. For the moment
we neglect the interaction potential Usy(r) and the long-
ranged sink terms S,(r). The quencher concentration C3 has
the set equal to 0.1 M. The parameter #, for the light pulse
width appearing in Eq. (4.1) has been set equal to 10 ns,

Both the excitation function F{f) and the fluorescence inte-
nsity function I(#), which is proportional to [D*], increase
as the light intensity parameter F, increases from 0.001 £,
to 10 %,. However, it is the shape of the fluorescence decay
curve rather than the absolute magnitude of the fluorescence
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l- Lf 1 Ll 1 1

------ Excitation function
F, = 0.001 kg

| - F, =k ]

Log 10 I(t)

time in ns

Figure 1. Effect of light pulse intensity on fluorescence de-
cay curves, I{)=[D*1[D*].s with [D*],.. denoting the peak
concentration of D*. The dotted curve represents the excita-
tion function log[F()/F,]. Values of model parameters used
are described in the text.

intensity that is usually observed in experiments. Hence, in
Figure 1 the fluorescence intensity curve for each F, value
has been scaled such that I)=[D*)/[D*Jne with [D*]wa
denoting the peak concentration of D* at the given F, value.
We note that the time at which (¢} becomes maximum shifts
to a shorter time as F, increases.

Comparison with the Conventional Smoluchowski
Theory. As mentioned in the introductery section, conven-
tional theories are expected to fail when the duration of
light pulse is not so short compared to the life time of fluo-
rophors. The discrepancy between the predictions of the pre-
sent and conventional theories will be amplified with increa-
ses in the light intensity and in the quencher concentration.
Indeed, these expectations are observed to be real and the
discrepancy between the results of the present and conven-
tional theories is discernible on the quantitative scale.

Results in the Case When Ugp{r)=0 for r20 and
$:(r)=0. Figure 2 shows that when the quencher concen-
tration is low (C3 =0.1 M) and excitation rate of D molecules
is small with F,=0.1 £,=26X10* s and £, =10 ns, the de-
viation of the conventional theory from the present theory
is negligibie. However, as the intensity of light increases,
the predictions of the conventional theory based on Eq. (1.11)
show increasing discrepancy. Figure 3 shows a case when
the maximum transition probability of D molecules per unit
time, F,, is ten times as large as & (e, F=26X10% s7)
with other parameters kept at the same values as in Figure
2. The dashed curve representing the result of the conven-
tional theory deviates much from the solid curve represen-
ting the result of the present theory. This deviation is largely
due to the assumption made by the conventional theory in
going from Eq. (1.9) to Eq. (1.11); that is, when the light
intensity is high, the concentration of the ground-state D
molecules cannot be considered to be constant. In case when
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_4- T T T Ll T

------ Excitation function

o Present theory -4
=== Conventlonal theory
=—.==:= Conventional theory (scaled)

Log,o (0]

0. 20. 40. 60.
time n ns

Figure 2. Variation of [D*] with time when the intensity
of light pulse is low. The vartical scale has no meaning for
the time profile of excitation function logw[F(*)/F,); it has
been shifted such that its peak value matches with the peak
value of [D*]. Values of model parameters used are descri-
bed in the text.

_3- T T Ll ¥ T

------ Excltation function
Present theory
|- ===-— Conventional theory
=~—:—-- Conventional theory (scaled)

Log;o (p°]

time in ns

Figure 3. Failure of the conventional theory under high
light intensity. Values of model parameters used are descri-
bed in the text.

the quantity measured in experiments is the variation of
the relative intensity of fluorescence rather than the absolute
magnitude of [D*], we also present the results of the con-
ventional theory in such a way that the peak value of [D*]
coincides with the exact one obtained from the present
theory. This scaled results with

[D#]mmmmi theory } (4'2)

[D*]mlm‘: [D‘mﬂ: Mm{ wt]mnmmmi Lhaory

are represented by the dot-dashed curve in Figure 3. How-
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_4- L LI T T T

------ Excitation function

Present theory

. ———  Conventional theory

—:=—:= Conventional theory (scaled)

60.

time in ns

Figure 4. Failure of the conventional theory under high
quencher concentration. Values of model parameters used
are described in the text.

ever, we still note a discrepancy. In the conventional and
the present theories, the times at which the maximum value
of [D*] or the maximum intensity of fluorescence occurs
lag differently from the time at which the exciting light pulse
peaks.

Figure 4 shows the deviation of the conventional theory
from the present theory under higher quencher concentra-
tion (C3 =0.5 M). Increasing the quencher concentration dec-
" reases the mean fluorescent life time so that the effect due
to the finite time-width of light pulse becomes more discer-
nible. Here, the light intensity is relatively low with F,=0.1
k=26X10° s~! and 4 =10 ns; the maximum value of the
fraction of D molecules excited is only 0.003. Other parame-
ters were fixed at the same values as in Figure 2. We note
that the conventional theory predicts a slower decay of [D*]
or the fluorescence intensity. The failure of the convention-
al theory in this case is mainly due to the approximation
made in Eq. (1.10).

Results in the Case When Upp«{r)#0. Figure 5 dis-
plays the effect of an attractive Coulomb force on the quen-
ching dynamics. Except that the potential of mean force Uy
(r) is now given by

Urrr)=kTr./r) for r2o 4.3

with r.=2Z,Zpe*/cksT=—200 ﬁ(Z,‘e and Zpe are charges on
A and D molecules, respectively, and ¢ is the dielectric cons-
tant of the solvent), other parameters have the same values
as in Figure 2. We see that in this case the conventional
theory fails since the approximation made in Eq. (1.10) is
inadequate. One may understand this resuit in terms of the
increase in the effective value for the reaction radius. It is
well known' that effect of the attractive Coulomb interaction
in diffusion-influenced reactions can be reproduced by using
an effective reaction radius in the potential-free calculation.
The value of the effective reaction radius,

or=r[(1+4m D/ky explr/o)—1]17", 4.4
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-4. T T T T T
------ Excitation function
Present theory
- —— == Conventional theory -
“—:—=-- Conventional theory (scaled)
-8. -

Log,o [D*]

60.

time in ns

Figure 5. Failure of the conventional theory in the presence
of an attractive potential of mean force. Values of model
parameters used are described in the text.

is 225 & in the present case. This increase in the effective
reaction radius increases the volume fraction, ¢=4no¥%C3/3,
occupied by the quencher molecules. Since the magnitude
of the influence of quencher concentration on the fluore-
scence quenching Kkinetics is gauged by this parameter ¢,
increase in o, results in a similar effect as the increase
in C§.

Results in the Case When S.(r)}+0. Effect of long-
range energy transfer is shown in Figure 6. We assume that
the long-range energy transfer occurs via the dipole-dipole
interaction mechanism™ so that S;(r) is given by

Si=1 ' R/ 4.5)

where R, is the critical separation for which energy transfer
from D* to A and unimolecular decay of D* are equally pro-
bable. We set the value of R, equal to 25 A We have as-
sumed that Uyp(r)=0 for 26 and other parameters used
are the same as in Figure 2. Again, the failure of the con-
ventional Smoluchowski theory may be explained by the inc-
rease in the effective reaction radius, which is given" by

— (R;:/Dto)lﬂr(Bf 4) 172 . K]{Ai(zo)
S =R 2TG/4) [1+ @ Tuaz) ]

=0676(RYDTYR.{1+ 1414 expl —RYDr) o1},
(4.6}
Here, 2,=(1/2X{R%/Dr)?672 T (2) is the gamma function, and
K4z} and I.(2) are the modified Bessel functions of order
v?®. For the model calculation in Figure 6, the value of oy
is 22.7 ﬁ, and this increase in effective reaction radius re-

sults in a similar effect as the increase in the quencher con-
centration.

Concluding Remarks

We have examined the effects of light intensity and quen-
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—-4. T T T T T
------ Excitation function
Present theory

|- ———  Conventional theory ~
~—:—:= Conventional theory (scaled)

Log,o D)

60.

time in ns

Figure 6. Failure of the conventional theory in the presence
of a long-range energy transfer interaction. Values of model
parameters used are described in the text

cher concentration on the dacay of fluorescence intensity
following an excitation of fluorophors by a light pulse with
short but nevertheless finite time width. As expected from
physical grounds described in the introductory section, it
has been shown that the conventional theory breaks down
when the intensity of exciting light pulse is very high and
when the quencher concentration is high. We have also found
that the presence of an attractive potential of mean force
or a long-range energy transfer interaction between the fluo-
rophor and quencher gives rise to a similar effect as the
enhancement in the quencher concentration. The validity of
the predictions of the present theory may thus be tested
by fluorescence quenching experiments performed under
such conditions.
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