• Title/Summary/Keyword: diode-connected

Search Result 145, Processing Time 0.023 seconds

Design of Compensation Circuits for LED Fault in Constant Current Driving (정전류 구동에서 LED 고장 보상 회로 설계)

  • Lee, Kwang;Jang, Min-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.71-76
    • /
    • 2022
  • Since brightness is proportional to the operating current, a method of connecting several LEDs in series and driving with a constant current source is widely used for driving circuits of LED lights. Because several LEDs are connected in series, if some LEDs open due to a fault, the current path is broken and all other LEDs connected in series are turned off. In this paper, we designed a circuit to solve this problem by connecting a Zener diode having a breakdown voltage of about 0.4V higher than the LED operating voltage in parallel with each LED to create a current bypass in case of LED failure. Through simulations and experiments, it was confirmed that the current of the Zener diode hardly flows when the LED is operating normally, and that the Zener diode stably operates as a current bypass when the LED fails.

Electrical Characteristics of PV Modules with Odd Strings by Arrangement on Bypass Diode (홀수스트링 PV모듈의 바이패스 다이오드 배치에 의한 전기적 특성)

  • Shin, Woo-Gyun;Go, Seok-Hwan;Ju, Young-Chul;Song, Hyung-Jun;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.4
    • /
    • pp.1-11
    • /
    • 2017
  • Most PV modules are fabricated by 6 cell-strings with solar cells connected in series. Moreover, bypass diodes are generally installed every 2 cell-strings to prevent PV modules from a damage induced by current mismatch or partial shading. But, in the case of special purpose PV module, like as BIPV (Building Integrated Photovoltaic), the number of cell-strings per module varies according to its size. Differ from a module employing even cell-strings, the configuration of bypass diode should be optimized in the PV module with odd strings because of oppositely facing electrodes. Hence, in this study, electrical characteristics of special purposed PV module with odd string was empirically and theoretically studied depending on arrangement of bypass diode. Here, we assumed that PV module has 3 strings and the number of bypass diodes in the system varies from 2 to 6. In case of 2 bypass diodes, shading on a center string increases short circuit current of the module, because of a parallel circuit induced by 2 bypass diodes connected to center string. Also, the loss is larger, as the shading area in the center string is enlarged. Thus, maximum power of the PV module with 2 bypass diode decreases by up to 59 (%) when shading area varies from 50 to 90 (%). On the other hand, In case of 3 and 6 bypass diodes, the maximum power reduction was within about 3 (W), even the shading area changes from 50 to 90 (%). As a result, It is an alternative to arrange the bypass diode by each string or one bypass diode in the PV module in order to completely bypass current in case of shading, when PV module with odd string are fabricated.

A Compact Tunable Bandpass Filter Using Coupled Metamaterial Resonators with Varactor Diode

  • Kim, Gi-Rae
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.484-488
    • /
    • 2010
  • In this paper, we present a novel tunable microstrip bandpass filter based on split ring resonators (SRRs). The varactors are reverse-biased semiconductor diode, and are connected between the concentric rings of the SRR. An individual varactor loaded SRR based bandpass tunable filter module is analyzed. Then a second order tunable filter with 7% fractional bandwidth and a tuning range from 2.75 to 2.86 GHz is assembled from basic filter modules. The simulator HFSS (V10) is used to design the tunable filter and to simulate. The results show good characteristics is created.

A Novel Boost PFC Converter Employing ZVS Based Compound Active Clamping Technique with EMI Filter

  • Mohan, P. Ram;Kumar, M. Vijaya;Reddy, O.V. Raghava
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.85-91
    • /
    • 2008
  • A Boost Power Factor Correction (PFC) Converter employing Zero Voltage Switching (ZVS) based Compound Active Clamping (CAC) technique is presented in this paper. An Electro Magnetic Interference (EMI) Filer is connected at the line side of the proposed converter to suppress Electro Magnetic Interference. The proposed converter can effectively reduce the losses caused by diode reverse recovery. Both the main switch and the auxiliary switch can achieve soft switching i.e. ZVS under certain condition. The parasitic oscillation caused by the parasitic capacitance of the boost diode is eliminated. The voltage on the main switch, the auxiliary switch and the boost diode are clamped. The principle of operation, design and simulation results are presented here. A prototype of the proposed converter is built and tested for low input voltage i.e. 15V AC supply and the experimental results are obtained. The power factor at the line side of the converter and the converter efficiency are improved using the proposed technique.

Single Balanced Monolithic Diode Mixer using Marchand Balun for Millimeter-wave Applications

  • Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.127-130
    • /
    • 2012
  • In this paper, we reported on a single balanced monolithic diode mixer using Marchand balun for millimeter-wave applications. The single balanced monolithic mixer was fabricated using drain-source-connected pseudomorphic high electron mobility transistor (PHEMT) diodes considering the PHEMT MMIC full process. The average conversion loss is 16 dB in the RF frequency range of 81~86 GHz at LO frequency of 75 GHz with LO power of 10 dBm. The RF-to-LO isolation characteristics are greater than -30 dB and the total chip size is $1.0mm{\times}1.35mm$.

Guided Missile Initiation Technologies, Now and Tomorrow (유도무기 착화기술의 현황과 발전 전망)

  • 장석태
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.102-108
    • /
    • 2000
  • The comparative evaluation/analysis of the initiation technologies currently being used, and the advanced initiation technologies currently being developed lot the aerospace and defense applications was performed. The evaluation criteria used were the compliance, performance, reliability, safety, and cost. The results clearly indicate that there is no one single initiation technology that will satisfy entire spectrum of initiation system requirements. Each initiation system architecture would require different initiation technologies that will satisfy the overall system performance requirements. However, laser initiation, particularly, the laser diode initiation has been getting more attention in recent years. The laser diode initiation, for most part, eliminates EMI and ESD concerns. In addition, laser diode initiation system can also be designed into relatively small packages, are optically connected systems by very light weight cables, are relatively easily designed to meet variety of initiation system requirements. Due to the these compelling factors, laser diode initiation has potential of becoming common initiation systems for many different aerospace and defense application.

  • PDF

High Efficiency Bridgeless Power Factor Correction Converter With Improved Common Mode Noise Characteristics (우수한 공통 모드 노이즈 특성을 가진 브릿지 다이오드가 없는 고효율 PFC 컨버터)

  • Jang, Hyo-Seo;Lee, Ju-Young;Kim, Moon-Young;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.85-91
    • /
    • 2022
  • This study proposes a high efficiency bridgeless Power Factor Correction (PFC) converter with improved common mode noise characteristics. Conventional PFC has limitations due to low efficiency and enlarged heat sink from considerable conduction loss of bridge diode. By applying a Common Mode (CM) coupled inductor, the proposed bridgeless PFC converter generates less conduction loss as only a small magnetizing current of the CM coupled inductor flows through the input diode, thereby reducing or removing heat sink. The input diode is alternately conducted every half cycle of 60 Hz AC input voltage while a negative node of AC input voltage is always connected to the ground, thus improving common mode noise characteristics. With the aim to improve switching loss and reverse recovery of output diode, the proposed circuit employs Critical Conduction Mode (CrM) operation and it features a simple Zero Current Detection (ZCD) circuit for the CrM. In addition, the input current sensing is possible with the shunt resistor instead of the expensive current sensor. Experimental results through 480 W prototype are presented to verify the validity of the proposed circuit.

Study of 60Hz Transformer-less High Frequency Linked Grid-Connected Power Conditioners for Photovoltaic Power System (60Hz 절연변압기가 없는 고주파링크방식 계통연계형 태양광발전시스템 고찰)

  • 유권종;정영석;최주엽
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.563-569
    • /
    • 2002
  • This paper proposes an inverter for the grid-connected photovoltaic system based on the transformer-less inverter. This system consists of a high frequency DC-DC converter, high frequency transformer, diode bridge rectifiers, a DC filter, a low frequency inverter, and an AC filter. The 20kHz switched high frequency converter is used to generate bipolar PWM pulse, and the high frequency transformer transforms its voltage twice, which is subsequently rectified by diode bridge rectifiers for a full-wave rectified 60 Hz sine wave power output. Even though the high frequency link system needs more power semiconductors, a reduced size, light weight, and saved parts cost make this system more comparative than other power conditioning systems due to elimination of 60Hz transformer.

Interleaved ZVS Resonant Converter with a Parallel-Series Connection

  • Lin, Bor-Ren;Shen, Sin-Jhih
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.528-537
    • /
    • 2012
  • This paper presents an interleaved resonant converter with a parallel-series transformer connection in order to achieve ripple current reduction at the output capacitor, zero voltage turn-on for the active switches, zero current turn-off for the rectifier diodes, less voltage stress on the rectifier diodes, and less current stress on the transformer primary windings. The primary windings of the two transformers are connected in parallel in order to share the input current and to reduce the root-mean-square (rms) current on the primary windings. The secondary windings of the two transformers are connected in series in order to ensure that the transformer primary currents are balanced. A full-wave diode rectifier is used at the output side to clamp the voltage stress of the rectifier diode at the output voltage. Two circuit modules are operated with the interleaved PWM scheme so that the input and output ripple currents are reduced. Based on the resonant behavior, all of the active switches are turned on under zero voltage switching (ZVS), and the rectifier diodes are turned off under zero current switching (ZCS) if the operating switching frequency is less than the series resonant frequency. Finally, experiments with a 1kW prototype are described to verify the effectiveness of the proposed converter.

Medium Voltage Resonant Converter with Balanced Input Capacitor Voltages and Output Diode Currents

  • Lin, Bor-Ren;Du, Yan-Kang
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.389-398
    • /
    • 2015
  • This paper presents a 1.92 kW resonant converter for medium voltage applications that uses low voltage stress MOSFETs (500V) to achieve zero voltage switching (ZVS) turn-on. In the proposed converter, four MOSFETs are connected in series to limit the voltage stress of the power switches at half of the input voltage. In addition, three resonant circuits are adopted to share the load current and to reduce the current stress of the passive components. Furthermore, the transformer primary and secondary windings are connected in series to balance the output diode currents for medium power applications. Split capacitors are adopted in each resonant circuit to reduce the current stress of the resonant capacitors. Two balance capacitors are also used to automatically balance the input capacitor voltage in every switching cycle. Based on the circuit characteristics of the resonant converter, the MOSFETs are turned on under ZVS. If the switching frequency is less than the series resonant frequency, the rectifier diodes can be turned off under zero current switching (ZCS). Experimental results from a prototype with a 750-800 V input and a 48V/40A output are provided to verify the theoretical analysis and the effectiveness of the proposed converter.