• Title/Summary/Keyword: diode laser

Search Result 1,017, Processing Time 0.023 seconds

Implementation of a Single Chip CMOS Transceiver for the Fiber Optic Modules (광통신 모듈용 단일 칩 CMOS트랜시버의 구현)

  • 채상훈;김태련
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.11-17
    • /
    • 2004
  • This paper describes the implementation of monolithic optical transceiver circuitry being used as a part of the fiber optic modules. It has been fabricated in 0.6 ${\mu}{\textrm}{m}$ 2-poly 3-metal silicon CMOS analog technology and operates at 155.52 Mbps(STM-1) data rates. It drives laser diode to transmit intensity modulated optical signal according to 155.52 Mbps electrical data from system. Also, it receives 155.52 Mbps optical data that transmitted from other systems and converts it to electrical data using photo diode and amplifier. To avoid noise and interference between transmitter and receiver on one chip, layout techniques such as special placement, power supply separation, guard ring, and protection wall were used in the design. The die area is 4 ${\times}$ 4 $\textrm{mm}^2$, and it has 32.3 ps rms and 335.9 ps peak to peak jitter on loopback testing. the measured power dissipation of whole chip is 1.15 W(230 mW) with a single 5 V supply.

Analysis of thermal stress through finite element analysis during vertical Bridgman crystal growth of 2 inch sapphire (유한요소해석법을 이용한 2 inch 사파이어 vertical Bridgman 결정성장 공정 열응력 해석)

  • Kim, Jae Hak;Lee, Wook Jin;Park, Yong Ho;Lee, Young Cheol
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.231-238
    • /
    • 2015
  • Sapphire single crystals have been highlighted for epitaxial of gallium nitride films in high-power laser and light emitting diode industries. Among the many crystal growth methods, vertical Bridgman process is an excellent commercial method for growing high quality sapphire crystals with c-axis. In this study, the thermally induced stress in Sapphire during the vertical Bridgman crystal growth process was investigated using a finite element model. A vertical Bridgman process of 2-inch Sapphire was considered for the model. The effects of vertical and transverse temperature gradients on the thermal stress during the process were discussed based on the finite element analysis results.

Optical Properties of Annealed ZnS Single Crystal (열처리한 ZnS 단결정의 광학적 특성)

  • Lee, Il Hun;Ahan, Chun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.2
    • /
    • pp.97-103
    • /
    • 1999
  • Zinc sulfide is a ll-VI compound with a large direct band gap in the near-UV region and a promising material for blur-light emitting diode and laser diode. It was identified that the structure had zinc blonde structure through the analysis of X-ray diffraction patterns. It's lattice constant was measured to be $a_o=5.411{\AA}$. The optical absorption, photocurrent, and photoluminescence spectra were measured to investigate the optical properties of zinc sulfide single crystal. The optical energy band gap measured at room temperature was 3.61eV The energy band gap of zinc sulfide annealed in zinc vapor at $800^{\circ}C$ was lower 0.1eV than that of as-grown zinc sulfide through the analysis of the photocurrent spectra. The photoluminescence spectra were measured ranging from 30K to 293K for the two cases of as-grown and annealed zinc sulfide. As-grown ZnS single crystal had peaks at 350nm, 392nm, 465nm, and annealed zinc sulfide had peaks at 349nm.

  • PDF

Hardware Configuration and Paradox Measurement for the Determination of Arrow Trajectory (화살의 이동궤적을 위한 하드웨어 구성 및 패러독스 측정)

  • Jeong, Yeong-Sang;Yu, Jung-Won;Lee, Han-Soo;Kim, Sung-Shin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.459-464
    • /
    • 2012
  • The point of impact, the shot group, and the flight traces depend on the combination of unique features which decide moving traces of the arrow (paradox of the archer, length of the arrow shaft, weight, angle of the feather, and spline of the arrow shaft). The more dense the impact points in the shot group and the earlier elimination of paradox of the archer, the higher assessment is given for the product. However, there is no way to objectively assess the efficiency and quality of the arrow, and there is no numeric data to be used as the basis for comparison with other products. Although capturing the images of flying arrow using a high-speed motion picture camera is possible, we are limited to observation from specific view angle only. Hence, the criteria for efficiency and quality assessment are mostly based on subjective opinions of experts or hunters, or review on consumers' remarks. In this paper, we propose a hardware composition that are based on three detection frames consisting of line lasers and photo diode arrays without the high-speed motion picture camera. Predicated on measured coordinates data, a nobel method for the archer's paradox measurement, a key parameter that determine the arrow's trajectory, and corresponding numerical analysis model is proposed.

Effect of growth temperature on properties of AlGaN grown by MOCVD

  • 김동준;문용태;송근만;박성주
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.111-111
    • /
    • 2000
  • 최근 질화물 반도체를 이용한 단파장 laser diode (LD)와 ultraviolet light emitting diode (LED)에 관한 관심의 증가로 인하여 AlGaN의 성장에 관한 연구가 많이 진행되고 있다. Metalorganic chemical vapor deposition (MOCVD)법을 이용한 AlGaN 성장에 있어서는 Al의 전구체로 널리 사용되고 있는 trimethylaluminum (TMAl)과 암모니아와의 기상에서의 adduct 형성을 억제하기 위하여 주로 저압에서 성장을 하거나 원료 가스의 유속을 증가시키는 방법으로 연구가 되고 있다. 또한, AlN의 경우 GaN보다 녹는점이 매우 높기 때문에 일반적으로 Al을 포함하는 질화물 반도체의 성장에 있어서는 GaN보다 녹는점이 매우 높기 때문에 일반적으로 Al을 포함하는 질화물 반도체의 성장에 있어서는 GaN 성장 시보다 높은 온도에서 성장이 이루어지고 있다. MOCND법을 이용하여 AlGaN를 성장시키는 대부분의 연구들은 100$0^{\circ}C$ 이상의 고온에서의 성장 온도가 AlGaN특성에 미치는 영향에 대한 것으로 국한되고 있다. 그러나, InGaN/GaN multiple quantum wells (MQWs) 구조의 LD나 LED를 성장시키는 경우 In의 desorption을 억제하기 위하여 MQWs층 위에 저온에서 AlGaN를 성장하는 데 있어서 AlGaN의 성장 온도를 500-102$0^{\circ}C$로 변화시키면서 AlGaN의 성장거동을 고찰하였다. GaN는 사파이어 기판을 수소분위기하에서 고온에서 가열한 후 저온에서 GaN를 이용한 핵생성층을 성장하고 102$0^{\circ}C$의 고온에서 1.2$\mu\textrm{m}$정도의 두께로 성장하였다. AlGaN는 고온에서 성장된 GaN 위에 200Torr의 성장기 압력 하에서 trimethylgallium (TMGa)과 TMAl의 유속을 각각 70 $\mu$mol/min 으로 고정한 후 성장온도만을 변화시키며 증착하였다. 성장 온도가 낮아짐에 따라 AlGaN의 표면거칠기가 증가하고, 결함과 관련된 포토루미네슨스가 현저히 증가하는 것이 관찰되었다. 그러나, 성장온도가 50$0^{\circ}C$정도로 낮아진 경우에 있어서는 표면 거칠기가 다시 감소하는 것이 관찰되었다. 이러한 현상은 저온에서 표면흡착원자의 거동에 제한이 따르기 때문으로 생각되어진다. 또한, 성장 온도가 낮아짐에 따라 AlGaN의 성장을 저해하기 때문으로 판단된다. 성장 온도 변화에 따라 성장된 V의 구조적 특성 및 표면 거칠기 변화를 관찰하여 AlGaN의 성장 거동을 논의하겠다.

  • PDF

AlN를 도핑시킨 ZnO박막의 전기적 및 광학적 특성

  • Son, Lee-Seul;Kim, Gyeom-Ryong;Lee, Gang-Il;Jang, Jong-Sik;Chae, Hong-Cheol;Gang, Hui-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.88-88
    • /
    • 2011
  • ZnO는 직접 천이형 반도체로써, 상온에서 3.4eV에 해당하는 띠틈을 가지고 있다. 뿐만 아니라 60meV의 큰 엑시톤 결합에너지를 가지고 있어 단파장 광전 소자 영역의 LED(Light Emitting Diode)나 LD(Laser Diode)에 널리 사용되고 있다. 하지만 일반적으로 격자틈새 Zn(Zni2+)이온이나 O 빈자리(V02+)이온과 같은 자연적인 도너 이온이 존재하여 n-형 전도성을 나타낸다. 그러므로 ZnO계 LED와 LD의 개발에 있어서 가장 중요한 연구 과제는 재현성 있고 안정된 고농도의 p-형 ZnO박막을 성장시키는 것이다. 하지만, 자기보상효과나 얕은 억셉터 준위, 억셉터의 낮은 용해도로 인하여 어려움을 가지고 있다. 본 연구에서는 고품질의 p-형 ZnO박막을 제작하기 위해 AlN를 도핑시킨 ZnO박막을 RF 마그네트론 스퍼터링 법을 이용하여 Ar과 O2분위기에서 성장시켰다. ZnO와 AlN타겟을 동시에 사용하였으며, ZnO타겟에 걸어준 RF 파워는 80W, AlN타겟에 걸어준 RF 파워는 5~20W로 변화시켰다. 박막의 전기적, 광학적 특성은 XPS (X-ray Photoelectron Spectroscopy), REELS (Reflection Electron Energy Loss Spectroscopy), XRD (X-ray Diffraction), SIMS (Secondary Ion Mass Spectrometry), AES (Auger Electron Spectroscopy), Hall measurement를 이용하여 연구하였다. XPS측정결과, AlN를 도핑시킨 ZnO박막의 Zn2p3/2와 O1s피크는 undoped ZnO박막의 피크보다 낮은 결합에너지에서 측정되었다. 모든 박막이 결정화 되었으며, (002)방향으로 우선적으로 성장된 것을 확인할 수 있었다. 홀 측정 결과, 기판을 $200^{\circ}C$로 가열하면서 성장시킨 박막이 p-형을 나타내었으며, 비저항(Resistivity)이 $5.51{\times}10^{-3}{\Omega}{\cdot}m$, 캐리어 농도(Carrier Concentration)가 $1.96{\times}1018cm^{-3}$, 이동도(Mobility)가 $481cm^2$/Vs이었다. 또한 QUEELS -Simulation에 의한 광학적 특성분석 결과, 가시광선영역에서 투과율이 90%이상으로 투명전자소자로의 응용이 가능하다는 것을 보여주었다.

  • PDF

Photodynamic Therapy Using Topically Applied 5-ALA, MAL and CLC for Canine Otitis Externa

  • Lee, Min-Ho;Song, Hee-Sung;Son, Wongeun;Yun, Young-Min
    • Journal of Veterinary Clinics
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Canine otitis externa is a common disorder in small animal practice with prevalence up to 20%. In a large percentage of cases, canine otitis externa is a chronic and recurrent disease also associated with drug-resistant bacteria that is difficult to treat with traditional antibiotics. Photodynamic therapy (PDT) is a new strategy to exterminate pathogenic microorganisms such as bacteria and fungi. The purpose of this study was to investigate the effectiveness of photodynamic therapy against canine otitis externa using three photosensitizer (PS); 5-Aminolevulinic acid (5-ALA) and Methyl aminolevulinic acid (MAL) with semiconductor laser diode (SLD, 635nm of wave length), Chlorophyll-lipoid complex (CLC) with light-emitting diode (LED, 660nm of wave length). After PDT, dogs showed improved Otitis Index Score (OTIS) in swelling, exudate, odor, and pain. A result of the cytology test revealed decrease of bacteria and malassezia count in the oil immersion field and colony forming units count. PDT was effective as a bacteriocide of methicillin-resistant Staphylococcus pseudintermedius (MRSP) and a fungicide of Malassezia pachydermatis. MAL and 5-ALA were more effective PS against canine otitis externa than CLC. These results suggest that PDT is a new strategy to exterminate pathogenic microorganisms such as bacteria and fungi. PDT can be considered as a new therapeutic approach for canine recurrent otitis externa and a countermeasure to drug resistance that is a disadvantage of traditional antibiotic and antifungal therapy.

Atomic Coherence Spectroscopy in the Paraffin Coated Rb Atom Vapor Cell (파라핀 코팅된 Rb원자 증기 셀에서 원자결맞음 분광)

  • Lee, Hyun-Joon;Yu, Ye-Jin;Bae, In-Ho;Moon, Han-Seb
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.334-340
    • /
    • 2008
  • We investigated the electromagnetically induced transparency (EIT) and the Hanle spectrum in a paraffin coated Rb vapor cell. The EIT spectrum was observed in the $F_g=2$, $3{\rightarrow}F_e=3$ transition of the $^{85}Rb$ $D_1$-line by using two independent external cavity diode lasers, and the Hanle spectrum was observed by using one external cavity diode laser in the $\Lambda$-type scheme between the Zeeman sublevels of the $F_g=2{\rightarrow}F_e=1$ transition of the $^{87}Rb$ $D_1$-line. In the Hanle spectrum, we could observe the dual-structured spectrum in the paraffin coated vapor cell. We investigated the dual-structured lineshape by applying an external magnetic field, and varying the direction of the magnetic field. The narrow linewidth of dual-structured EIT was measured to be approximately 200 Hz.

Implant Isolation Characteristics for 1.25 Gbps Monolithic Integrated Bi-Directional Optoelectronic SoC (1.25 Gbps 단일집적 양방향 광전 SoC를 위한 임플란트 절연 특성 분석)

  • Kim, Sung-Il;Kang, Kwang-Yong;Lee, Hai-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.52-59
    • /
    • 2007
  • In this paper, we analyzed and measured implant isolation characteristics for a 1.25 Gbps monolithic integrated hi-directional (M-BiDi) optoelectronic system-on-a-chip, which is a key component to constitute gigabit passive optical networks (PONs) for a fiber-to-the-home (FTTH). Also, we derived an equivalent circuit of the implant structure under various DC bias conditions. The 1.25 Gbps M-BiDi transmit-receive SoC consists of a laser diode with a monitor photodiode as a transmitter and a digital photodiode as a digital data receiver on the same InP wafer According to IEEE 802.3ah and ITU-T G.983.3 standards, a receiver sensitivity of the digital receiver has to satisfy under -24 dBm @ BER=10-12. Therefore, the electrical crosstalk levels have to maintain less than -86 dB from DC to 3 GHz. From analysed and measured results of the implant structure, the M-BiDi SoC with the implant area of 20 mm width and more than 200 mm distance between the laser diode and monitor photodiode, and between the monitor photodiode and digital photodiode, satisfies the electrical crosstalk level. These implant characteristics can be used for the design and fabrication of an optoelectronic SoC design, and expended to a mixed-mode SoC field.

Effect of Photodynamic Therapy in Lung Cancer (폐암에서 광역동치료술의 효과)

  • Yoon, Sung Ho;Han, Kyung Taek;Kim, Gyung Nam;Lee, Seung Il
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.4
    • /
    • pp.358-363
    • /
    • 2004
  • Background : Photodynamic therapy (PDT) involves the use of photosensitizing agents for treatment of malignant disease. PDT is approved by the U.S. Food and Drug Administration for the endobronchial microinvasive nonsmall cell lung cancer and for palliation in patients with obstructing tumors. We report our experience and results of PDT in lung cancer. Method : Ten patients with lung cancer who were diagnosed in Chosun university hospital by histologic confirm through bronchoscopy were included between August 2002 and May 2003. The photosensitizer (Photogem$^{(R)}$, Lomonosov institute of Fine Chemical, Russia/dose 2.0 mg/kg body weight) was injected 48 hours prior to the PDT session. For PDT with the photosensitizer (Photogem$^{(R)}$), Diode LASER system (Biolitec Inc., Germany, wavelength; 633nm) were used. PDTs were done at 48-72 hours after photogem injection. Follow up bronchoscopy and chest X-ray or thorax computerized tomography were done for evaluate PDT response. Results : 9 of 10 patients with endobronchial obstruction showed partial remission with bronchus opening after PDT. Direct reaction of the tumor to PDT was similar in despite of its localization. It was as follows; edema, hyperemia, in-situ bleeding, fibrin film occurrence. Any other complications such as sunburns of skin, inflammation within the PDT zone were not occurred by the end of the fourth week. Conclusion : In the advanced endobronchial disease, PDT has been shown to be useful in treating endobronchial tumors that are causing clinically significant dyspnea or are likely to progress and lead to further clinical complications, such as postobstructive pneumonia.