• Title/Summary/Keyword: dimensionless parameter

Search Result 188, Processing Time 0.023 seconds

Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium

  • Kolahchi, Reza;Bidgoli, Ali Mohammad Moniri;Heydari, Mohammad Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1001-1014
    • /
    • 2015
  • Bending analysis of functionally graded (FG) nano-plates is investigated in the present work based on a new sinusoidal shear deformation theory. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. The material properties of nano-plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The size effects are considered based on Eringen's nonlocal theory. Governing equations are derived using energy method and Hamilton's principle. The closed-form solutions of simply supported nano-plates are obtained and the results are compared with those of first-order shear deformation theory and higher-order shear deformation theory. The effects of different parameters such as nano-plate length and thickness, elastic foundation, orientation of foundation orthtotropy direction and nonlocal parameters are shown in dimensionless displacement of system. It can be found that with increasing nonlocal parameter, the dimensionless displacement of nano-plate increases.

Propagation characteristics of longitudinal wave, shear wave and bending wave in porous circular nanoplates

  • Shan, Wubin;Deng, Zulu;Zhong, Hao;Mo, Hu;Han, Ziqiang;Yang, Zhi;Xiang, Chengyu;Li, Shuzhou;Liu, Peng
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.551-559
    • /
    • 2020
  • On the basis of nonlocal strain gradient theory, considering the material properties of porous FGM changing with thickness and the influence of moment of inertia, the wave equation of FG nano circular plate is derived by using the first-order shear deformation plate theory, by introducing dimensionless parameters, we transform the equations into dimensionless wave equations, and the dispersion relations of bending wave, shear wave and longitudinal wave are obtained by Laplace and Hankel integral transformation method. The influence of nonlocal parameter, porosity volume fraction, strain gradient parameters and power law index on the propagation characteristics of bending wave, shear wave and longitudinal wave in FG nano circular plate.

Ultrasonic waves in a single walled armchair carbon nanotube resting on nonlinear foundation subjected to thermal and in plane magnetic fields

  • Selvamani, Rajendran;Jayan, M. Mahaveer Sree;Ebrahimi, Farzad
    • Coupled systems mechanics
    • /
    • v.10 no.1
    • /
    • pp.39-60
    • /
    • 2021
  • The present paper is concerned with the study of nonlinear ultrasonic waves in a magneto thermo (MT) elastic armchair single-walled carbon nanotube (ASWCNT) resting on polymer matrix. The analytical formulation is developed based on Eringen's nonlocal elasticity theory to account small scale effect. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been analyzed numerically by using the nonlinear foundations supported by Winkler-Pasternak model. The solution is obtained by ultrasonic wave dispersion relations. Parametric work is carried out to scrutinize the influence of the non local scaling, magneto-mechanical loadings, foundation parameters, various boundary condition and length on the dimensionless frequency of nanotube. It is noticed that the boundary conditions, nonlocal parameter, and tube geometrical parameters have significant effects on dimensionless frequency of nano tubes. The results presented in this study can provide mechanism for the study and design of the nano devices like component of nano oscillators, micro wave absorbing, nano-electron technology and nano-electro- magneto-mechanical systems (NEMMS) that make use of the wave propagation properties of armchair single-walled carbon nanotubes embedded on polymer matrix.

Static and dynamic bending of ball reinforced by CNTs considering agglomeration effect

  • Chenghong Long;Dan Wang;H.B. Xiang
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.419-428
    • /
    • 2023
  • In this paper, dynamic and static bending of ball modelled by nanocomposite microbeam by nanoparticles seeing agglomeration is presented. The structural damping is considered by Kelvin-Voigt model. The agglomeration effects are assumed using Mori-Tanaka model. The football ball is modeled by third order shear deformation theory (TSDT). The motion equations are derived by principle of Hamilton's and energy method assuming size effects on the basis of Eringen theory. Using differential quadrature method (DQM) and Newmark method, the static and dynamic deflections of the structure are obtained. The effects of agglomeration and CNTs volume percent, damping of structure, nonlocal parameter, length and thickness of micro-beam are presented on the static and dynamic deflections of the nanocomposite structure. Results show that with increasing CNTs volume percent, the maximum dimensionless dynamic deflection is reduced about 17%. In addition, assuming CNTs agglomeration increases the dimensionless dynamic deflection about 14%. It is also found that with increasing the CNTs volume percent from 0 to 0.15, the static deflection is decreased about 3 times due to the enhance in the stiffness of the structure. In addition, with enhancing the nonlocal parameters, the dynamic deflection is increased about 3.1 times.

Probabilistic bearing capacity of circular footing on spatially variable undrained clay

  • Kouseya Choudhuri;Debarghya Chakraborty
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.93-106
    • /
    • 2024
  • The present paper investigates the spatial variability effect of soil property on the three-dimensional probabilistic characteristics of the bearing capacity factor (i.e., mean and coefficient of variation) of a circular footing resting on clayey soil where both mean and standard deviation of undrained shear strength increases with depth, keeping the coefficient of variation constant. The mean trend of undrained shear strength is defined by introducing the dimensionless strength gradient parameter. The finite difference method along with the random field and Monte Carlo simulation technique, is used to execute the numerical analyses. The lognormal distribution is chosen to generate random fields of the undrained shear strength. In the study, the potential failure of the structure is represented through the failure probability. The influences of different vertical scales of fluctuation, dimensionless strength gradient parameters, and coefficient of variation of undrained shear strength on the probabilistic characteristics of the bearing capacity factor and failure probability of the footing, along with the probability and cumulative density functions, are explored in this study. The variations of failure probability for different factors of safety corresponding to different parameters are also illustrated. The results are presented in non-dimensional form as they might be helpful to the practicing engineers dealing with this type of problem.

The Pore Volume of Groundwater Level Drawdown Zone Through Slug/Bail Tests in Sand and Silt Soils (모래와 실트의 혼합층에서 순간충격시험에 의한 지하수위 강하구역의 공극체적 산정)

  • Kim, Tae-Yeong;Kang, Dong-Hwan;Chung, Sang-Yong;Yang, Sung-Il;Lee, Min-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Slug/bail tests were conducted in sand layer (sbt-1 well), silty sand layer (sbt-2 well), and mixed sand and silty sand layer (sbt-3 well). Hydraulic conductivity and specific storage coefficient were estimated through slug/bail tests. Pore volumes of groundwater level drawdown zone for bail test were estimated by using hydraulic conductivity and specific storage coefficient. KGS model was most suitable interpretation method of slug/bail tests. Average hydraulic conductivity for slug/bail tests were estimated to be $6.65{\times}10^{-5}$ m/sec in sbt-1 well, $6.33{\times}10^{-6}$ m/sec in sbt-2 well, and $3.72{\times}10^{-5}$ m/sec in sbt-3 well. Average specific storage coefficient for slug/bail tests were estimated to be 0.0225 in sbt-1 well, 0.0177 in sbt-2 well, and 0.0259 in sbt-3 well. Dimensionless time and dimensionless wellbore storage were estimated by use of transmissivity, storativity, test time, and specification of test wells. And, dimensionless drawdown were selected by parameter ${\alpha}\;and\;{\beta}$ parameter from Cooper et al. (1967). Radius of influence were estimated by estimated dimensionless time, dimensionless wellbore storage, and dimensionless drawdown. The average radius of influnce for slug/bail tests were estimated to be 1.377 m in sbt-1 well, 1.253 m in sbt-2 well, and 1.558 m in sbt-3 well. Pore volume at groundwater level drawdown zone by dummy withdrawal for bail tests were estimated to be $145,636cm^3$ in sbt-1 well, $71,561cm^3$ in sbt-2 well, and $100,418cm^3$ in sbt-3 well. Pore volume excepted well volume at groundwater level drawdown zone by dummy withdrawal for bail tests were estimated to be $145,410cm^3$ in sbt-1 well, $71,353cm^3$ in sbt-2 well, and $100,192cm^3$ in sbt-3 well.

Squeezing Flow of Micropolar Nanofluid between Parallel Disks

  • Khan, Sheikh Irfanullah;Mohyud-Din, Syed Tauseef;Yang, Xiao-Jun
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.476-489
    • /
    • 2016
  • In the present study, squeezing flow of micropolar nanofluid between parallel infinite disks in the presence of magnetic field perpendicular to plane of the disks is taken into account. The constitutive equations that govern the flow configuration are converted into nonlinear ordinary differential with the help of suitable similarity transforms. HAM package BVPh2.0 has been employed to solve the nonlinear system of ordinary differential equations. Effects of different emerging parameters like micropolar parameter K, squeezed Reynolds number R, Hartmann number M, Brownian motion parameter Nb, thermophoresis parameter Nt, Lewis number Le for dimensionless velocities, temperature distribution and concentration profile are also discussed graphically. In the presence of strong and weak interaction (i.e. n = 0 and n = 0.5), numerical values of skin friction coefficient, wall stress coefficient, local Nusselt number and local Sherwood number are presented in tabulated form. To check the validity and reliability of the developed algorithm BVPh2.0 a numerical investigation is also a part of this study.

Hydrodynamic Stability of Buoyancy-induced Flows Adjacent to a Vertical Isothermal Surface in Cold Pure Water (차가운 물에 잠겨있는 수직운동 벽면주위의 자연대류에 관한 안정성)

  • 황영규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.630-643
    • /
    • 1991
  • The hydrodynamic stability equations are formulated for buoyancy-induced flows adjacent to a vertical, planar, isothermal surface in cold pure water. The resulting stability equations, when reduced to ordinary differential equation by a similarity transformation, constitute a two-point boundary-value(eigenvalue) problem, which was numerically solved for various values of the density extremum parameter R=( $T_{m}$ - $T_.inf./) / ( $T_{o}$ - $T_.inf./). These stability equations have been solved using a computer code designed to accurately solve two-point boundary-value problems. The present numerical study includes neutral stability results for the region of the flows corresponding to 0.0.leq. R. leq.0.15, where the outside buoyancy force reversals arise. The results show that a small amount of outside buoyancy force reversal causes the critical Grashof number $G^*/ to increase significantly. A further increase of the outside buoyancy force reversal causes the critical Grashof number to decrease. But the dimensionless frequency parameter $B^*/ at $G^*/ is systematically decreased. When the stability results of the present work are compared to the experimental data, the numerical results agree in a qualitative way with the experimental data.erimental data.

A Fire Hazard Assessment of Interior Finish Materials (건물 내장재의 화재위험성 평가 방법)

  • 김운형
    • Fire Science and Engineering
    • /
    • v.12 no.2
    • /
    • pp.17-28
    • /
    • 1998
  • To propose a new fire hazard assessment criteria of interior finish materials, the properties and incident heat flux of interior finish materials in a compartment fires are investigated and compared by using flame spread model developed by Quintiere. The properties considered on which fire growth depend are including flame heat flux and thermal inertia, lateral flame spread parameter, heat of combustion and effective heat flux and thermal inertia, lateral flame spread parameter, heat of combustion and effective heat of gasfication. ISO Room Corner Test(9705) is applied in the model and the time for total energy release rate to reach 1MW is examined. The results are compared for the 24 different materials tested by EUREFIC. Dimensionless parameter a, b and ${\gamma}$b are used to develope a new method in which fire hazard of interior finish materials can be classified resulting from correlation between b and flashover time. Results show that if b greater than about zero, flashover time in the ISO Room-Corner Test is principally proportional to ignition time only.

  • PDF

The Sensitivity Analysis of Parameters of Urban Runoff Models due to Variations of Basin Characteristics (I) - Development of Sensitivity Analysis Method - (유역특성 변화에 따른 도시유출모형의 매개변수 민감도분석(I) -민감도분석방법의 개발-)

  • Seo, Gyu-U;Jo, Won-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.243-252
    • /
    • 1998
  • In this study, the new dimensionless values were defined and proposed to determine the parameters of urban runoff models based on the relative sensitivity analysis. Also, the sensitivity characteristics of each parameter were investigate. In order to analyze the parameter sensitivities of each model, total runoff ratio, peak runoff ratio, runoff sensitivity ratio, sensitivity ratio of total runoff, and sensitivity ratio of peak runoff were defined. $$Total\;runoff\;ratio(Q_{TR})\;=\;\frac{Total\;runoff\;of\;corresponding\;step}{Maximum\;total\;runoff}$$$$Peak\;runoff\;ratio(Q_{PR})\;=\;\frac{Peak\;runoff\;of\;corresponding\;step}{Maximum\;peak\;runoff}$$$$Runoff\;sensitivity\;ratio(Q_{SR})\;=\;\frac{Q_{TR}}{Q_{PR}}$$ And for estimation of sensitivity ratios based on the scale of basin area, rainfall distributions and rainfall durations in ILLUDAS & SWMM, the reasonable ranges of parameters were proposed.

  • PDF