• Title/Summary/Keyword: diisocyanate

Search Result 309, Processing Time 0.019 seconds

Bonding Strength of Ozonized Soybean Oil-based Modified pMDI Adhesive Hardened at High and Medium Temperature (오존산화 콩기름 변성 pMDI 접착제의 고온 및 중온 경화 접착력)

  • Lee, Eung-Su;Kang, Chan-Young;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.541-546
    • /
    • 2010
  • This study was to investigate the dry bond strengths of the plywoods manufactured with 3 hours ozonized soybean oil (SBO)/polymeric methylene diphenyl diisocyanate (pMDI) adhesive at mid and high curing temperature. In results of the dry bonding strengths of the 3 hrs-ozonized SBO mixed with pMDI at high curing temperature were respectively the strengths of weight ratio of 3hrs-ozonized SBO : pMDI, 1 : 0.5, 4.74 kgf/$cm^2$, 1 : 0.75, 7.14 kgf/$cm^2$ 1 : 1, 9.29 kgf/$cm^2$, 1 : 2, 16.53 kgf/$cm^2$, 1 : 3, 17.42 kgf/$cm^2$, and 1 : 4, 16.75 kgf/$cm^2$. Therefore, it was found that the equivalent ratio was formed approximately between 3 hrs-ozonized SBO : pMDI 1 : 2 and 1 : 3. The dry bonding strengths of the 3hrs-ozonized SBO mixed with pMDI at medium curing temperature were respectively the strengths of weight ratio of 3 hrs-ozonized SBO : pMDI, 1 : 0.5, 3.16 kgf/$cm^2$, 1 : 0.75, 6.13 kgf/$cm^2$ 1 : 1, 8.18 kgf/$cm^2$, 1 : 2, 11.82 kgf/$cm^2$. In this experiment the higher bonding strength at high curing temperature was shown approximately between 3 hrs-ozonized SBO : pMDI 1 : 2 and 1 : 3. If this wood adhesive is used at high curing temperature, it is possibile to bond the plywoods.

Hazard and Risk Assessment and Cost and Benefit Analysis for Revising Permissible Exposure Limits in the Occupational Safety and Health Act of Korea (산업안전보건법 허용기준 대상물질의 허용기준 개정을 위한 유해성·위험성 평가 및 사회적 비용·편익 분석)

  • Kim, Ki Youn;Oh, Sung Eop;Hong, Mun Ki;Lee, Kwon Seob
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.2
    • /
    • pp.134-145
    • /
    • 2015
  • Objectives: An objective of this study was to perform a risk assessment and social cost-benefit analysis for revising permissible exposure limits for seven substances: Nickel(Insoluble inorganic compounds), benzene, carbon disulfide, formaldehyde, cadmium(as compounds), trichloroethylene, touluene-2,4-diisocyanate. Materials and Methods: The research methods were divided into risk and hazard assessment and cost-benefit analysis. The risk and hazard assessment for the seven substances consists of four steps: An overview of GHS MSDS(1st), review of document of ACGIH's TLVs (2nd), comparison between international occupational exposure limits and domestic permissible exposure limits(3rd), and analysis of excess workplace and excess rate for occupational exposure limits based on previous work environment measurement data(4th). Total cost was estimated using cost of local exhaust ventilation, number of excess workplace and penalties for exceeding a permissible exposure limit. On the other hand, total benefit was calculated using the reduction rate of occupational disease, number of workplaces treating each substance and industrial accident compensation. Finally, the net benefit was calculated by subtracting total cost from total benefit. Results: All the substances investigated in this study were classified by CMR(Carcinogens, Mutagens or Reproductive toxicants) and their international occupational exposure limits were stricter than the domestic permissible exposure limits. As a result of excess rate analysis, trichloroethylene was the highest at 11%, whereas nickel was the lowest at 0.5%. The excess rates of all substances except for trichloroethylene were observed at less than 10%. Among the seven substances, the total cost was highest for trichloroethylene and lowest for carbon disulfide. The benefits for the seven substances were higher than costs estimated based on strengthening current permissible exposure limits. Thus, revising the permissible exposure limits of the seven substances was determined to be acceptable from a social perspective. Conclusions: The final revised permissible exposure limits suggested for the seven substances are as follows: $0.2mg/m^3$ for nickel, 0.5 ppm(TWA) and 2.5 ppm(STEL) for benzene, 1 ppm(TWA) for carbon disulfide, $0.01mg/m^3$(TWA) for cadmium, 10 ppm(TWA) and 25 ppm(STEL) for trichloroethylene, 0.3 ppm(TWA) for formaldehyde, and 0.005 ppm(TWA) and 0.02 ppm(STEL) for toluene diisocynate(isomers).

Role of Matrix Metalloproteinase in the Pathogenesis of Bronchial Asthma (기관지 천식의 병인에서 Matrix Metalloproteinase의 역할)

  • Lee, Yong-Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.2
    • /
    • pp.101-112
    • /
    • 2002
  • Background : Toluene diisocyanate(TDI) is a leading cause of occupational asthma. However, the pathogenesis of TDI-induced asthma is largely unknown because there is no suitable animal model. Materials and Methods : We developed a murine model of TDI-induced asthma by performing two sensitization with 3% TDI and one challenge with 1% TDI using ultrasonic nebulization. Results : Similar to occupational asthma in humans, murine TDI-induced asthma includes findings 1) increased inflammatory cells, including neutrophils and eosinophils, 2) histologic changes, including infiltration of inflammatory cells around bronchioles, thickened airway epithelium, contraction of bronchioles, and accumulation of mucus and debris in the bronchioles, 3) increased MMP-9 activity in inflammatory cells in the airway lumen, 4) airway hyperrespnosiveness. Administraion of an MMP inhibitor, MMPI-I, remarkably reduced all these pathophysiological findings. Conclusion : Therefore, we conclude that TDI-induced occupational asthma is associated with the induction of MMP-9 in inflammatory cells, and the inhibition of MMP-9 may be a good therapeutic strategy.

A study on synthesis of polyurethane dispersion by $H_{12}MDI$ and how effect to mechanical properties by ammonium dihydrogen phosphate ($H_{12}MDI$를 이용한 수분산 폴리우레탄 수지의 합성 및 ammonium dihydrogen phosphate에 의한 물성변화에 관한 연구)

  • Lee, Joo-Youb;Nam, Sang-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.74-82
    • /
    • 2014
  • For this research, prepared ammonium dihydrogen phosphate aqueous solution and polyurethane dispersion. Use these resin, this article has been analyzed about change of mechanical properties by increasing amount of ammonium dihydrogen phosphate aqueous solution in polyurethan resin on coated leather and dried film. According to measure data for solvent resistance, DPU(polyurethane dispersion) resin and DPU-AD1, D2, D3(samples of polyurethaneresin with ammonium dihydrogen phosphate aqueous solution) had good property. As known in the results, increase of ammonium dihydrogen phosphate constant did not influence to big change of polyurethane resin properties. As test of tensile strength, DPU had highest tensile characteristic($3.114kg_f/mm^2$) and DPU-AD3 had lowest tensile characteristic($2.510kg_f/mm^2$). As same as tensile characteristic, abrasion test determined DPU(50.5 mg.loss) had highest properties. In elongation case, DPU had best properties(602 %) in this experiment.

Resudual Stress Behavior and Characterization of Poly(urethane-imide) Crosslinked Networks (가교형 폴리우레탄이미드의 합성을 통한 잔류 응력 거동 측정 및 특성 분석)

  • Park, Mi-Hee;Yang, Seung-Jin;Jang, Wonbong;Han, Haksoo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.305-312
    • /
    • 2005
  • Poly(urethane-imide)s were prepared by reaction between crosslinkable endgroup containing soluble polyimide (PI) by chemical imidization and acrylate end-capped polyurethane (PU). Poly (amic acid) was prepared from 2,2'-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 4,4'-oxydianiline (ODA) and then end-capped with maleic anhydride (MA). The PU prepolymers were prepared by the reaction of polycaprolactone diol, tolylene 2,4-diisocyanate and end-capped with hydroxyl ethyl acrylate. The effect of PU content on the residual stress behavior, morphology and thermal property was studied. The poly(urethane-imide)s were characterized by thin film stress analyzer (TFSA), XRD, TGA and DMTA. Low residual stress and slope in cooling curve were achieved by higher PU content. Compared to typical polyurethane, these polymers exhibited better thermal stability due to the presence of the imide groups. Finally the residual stress of poly(urethane-imide)s was strongly affected by the morphological structure.

Preparation and Properties of Polyurethanes Containing Polycarbonate Polyol/Bio Polyol for Wet Type Artificial Leather (폴리카보네이트 폴리올/바이오 폴리올을 이용한 습식 인조피혁용 폴리우레탄의 제조 및 물성)

  • Sur, Suk-Hun;Ko, Jae-Wang;Choi, Pil-Jun;Lee, Jae-Yeon;Lee, Young-Hee;Kim, Han-Do
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.114-122
    • /
    • 2019
  • The synthesis of bio polyol from renewable resources has attracted attention in recent years. In particular, it is important to take advantage of bio polyols in the synthesis of polymers. In this study, a series of dimethylformamide (DMF) based polyurethanes were synthesized using polycarbonate polyol/bio polyol (PO3G: polytrimethylene ether glycol prepared from 1, 3-propanediol produced by fermentation from corn sugar), methylene diphenyl diisocyanate (MDI) and 1,4-butandiol (BD). The properties of prepared polyurethane films and the cell structure of wet type artificial leather were investigated. As the bio polyol content increased, the tensile strength of polyurethane films decreased, however, the elongation at break increased significantly. As a result of thermal characteristics analysis, the glass transition temperature of polyurethanes increased when increasing the content of polycarbonate polyol. As a result of comparing the cell characteristics of wet type artificial leathers prepared in this study, it was found that the number and uniformity of cells formed in the artificial leather samples increased when increasing the content of polycarbonate polyol in polycarbonate polyol/bio polyol. From these results, it was found that DMF-based polyurethane containing an appropriate amount of bio polyol could be used for wet type artificial leather. The bio textile analysis system according to ASTM standard was used to measure the bio carbon content of polyurethane. The content of bio carbon increased proportionally with the increase of bio polyol content used in polyurethane synthesis.

Preparation and Properties of DMF-Based Polyurethanes Containing Bio-Polyol/Ester-Polyol for Wet-Type Polyurethane Artificial Leather (습식 인조피혁용 바이오 폴리올/폴리에스터 폴리올을 함유한 DMF 기반 폴리우레탄의 제조 및 물성)

  • Sur, Suk-Hun;Choi, Pil-Jun;Ko, Jae-Wang;Park, Ji-Hyeon;Lee, Jae-Yeon;Lee, Young-Hee;Kim, Han-Do
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.7-13
    • /
    • 2019
  • Recently, attention has been paid to obtaining bio-polyols from renewable resources. Successful use of these natural ingredients successfully produced in the industry for the synthesis of various polyurethanes is a very important task. In this study, a series of dimethylformamide (DMF) based polyurethanes were synthesized from methylene diphenyl diisocyanate (MDI)/1, 4-butanediol and bio-polyol (polytrimethylene ether glycol based on 1, 3-propanediol : B-POL)/polyester polyol (polyadipate diol based on 1,4-butandiol : H-PET). The effect of different ratio of bio-polyol (B-POL)/polyester polyol (H-PET) on the physical properties of polyurethane was investigated. As the B-POL content in B-POL/H-PET mixture increased, the glass transition of soft segment (Tgs) and tensile strength of polyurethane decreased, however, the elongation at break and tear strength increased. On the other hand, artificial leather was produced by wet process using synthesized DMF-based polyurethanes. It was found that there was almost no difference in the effect of the B-POL/H-PET composition on the average size and density (the number of cells per unit volume) of the porous cells formed in artificial leather. These results show that there is no problem in using bio-polyol (B-POL) based polyurethane for artificial leather produced by wet process.

Polymer Eyeglass Lens with Ultraviolet & High-Energy Visible Light Blocking Function for Eye Health (자외선 및 고에너지 가시광 차단 기능을 갖는 눈 건강을 위한 폴리머 안경렌즈)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.10-15
    • /
    • 2020
  • Ultraviolet rays, which have wavelengths smaller than 400 nm, are very harmful to the eyes. Recently, high-energy visible light was also revealed to be harmful to retinal cells. Therefore, polymer eyeglass lenses that can block UV and high-energy visible light are needed for eye health. In this study, high-refractive-index polymer eyeglass lens, n=1.67, were manufactured using the injection-mold method with the m-xylene diisocyanate monomer, 2,3-bis((2-mercaptoethyl)thio)-1-propanethiol monomer, benzotriazole UV absorber, release of alkyl phosphoric ester, dye mixture of CI solvent violet 13, and catalyst of dibutyltin dichloride mixture. A multi-layer anti-reflection coating was applied to manufactured polymer eyeglass lenses for both sides using an E-beam evaporation system. The optical properties of the manufactured lenses with the UV and high-energy visible light-blocking function were analyzed by UV-visible spectrophotometry. As a result, the polymer eyeglass lens with a UV absorber of 0.5 wt. % blocked 99% of UV and high-energy visible light shorter than 411 nm. The average transmittance of the polymer eyeglass lens with a UV absorber of 0.5wt.% was 97.9% in the range of 460 ~ 660 nm for photopic eye sensitivity higher than 10%. Therefore, clear image acquisition in photopic vision is possible.

Chemical Structure of Ozonized Waste Cooking Oil and Wood Bonding Strengths of Reaction Products with pMD (오존 처리한 폐식용유의 화학구조와 pMDI로 제조한 접착제의 목재 접착강도)

  • Kang, Chan-Young;Lee, Eung-Su;Ryu, Jae-Yun;Lee, Hyun-Jong;Seo, Jun-Won;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.316-322
    • /
    • 2010
  • The research attempted to develop a wood adhesive based on waste cooking oil, using ozonification technology for the chemical structure modification. The waste cooking oil (WCO) was reacted with $O_3$ for different times; 1 h, 2 h, and 3 h. The chemical structure modifications of the ozonized WCOs were examined by Fourier transform Infrared (FT-IR) spectrum. The FT-IR spectrum of WCO had an absorbance peak at 3,010 $cm^{-1}$ that was the characteristic peak of the unsaturated double bonds. As ozone treatment time increased, the peak of the double bond was disappeared and carboxyl peak appeared at 1,700 $cm^{-1}$. Especially, the double bond of 3 hrs-ozonized WCO was vanished almost. In results of the dry bonding strengths of the 3 hrs-ozonized WCO mixed with polymeric methylene diphenyl diisocyanate (pMDI) were the strengths of weight ratio of 3hrs-ozonized WCO : pMDI, 1 : 0.5, 8.08 kgf/$cm^2$, 1 : 0.75, 9.53 kgf/$cm^2$ 1 : 1, 44.16 kgf/$cm^2$, 1 : 2, 58.08 kgf/$cm^2$, 1 : 3, 61.41 kgf/$cm^2$, and 1 : 4, 46.95 kgf/$cm^2$. Therefore, it was found that the optimum equivalent ratio was formed at the ratio of 1 : 2 or 1 : 3. Under wetting the bonding strength of 1 : 3 ratio was appeared higher than that of 1 : 2 ratio, while the results obtained from hot-water and cyclic boiling shear test were similar.