DOI QR코드

DOI QR Code

Preparation and Properties of DMF-Based Polyurethanes Containing Bio-Polyol/Ester-Polyol for Wet-Type Polyurethane Artificial Leather

습식 인조피혁용 바이오 폴리올/폴리에스터 폴리올을 함유한 DMF 기반 폴리우레탄의 제조 및 물성

  • Sur, Suk-Hun (Department of Organic Material Science and Engineering, Busan National University) ;
  • Choi, Pil-Jun (Korea Institute of Footwear & Leather Technology) ;
  • Ko, Jae-Wang (Korea Institute of Footwear & Leather Technology) ;
  • Park, Ji-Hyeon (Korea Institute of Footwear & Leather Technology) ;
  • Lee, Jae-Yeon (Korea Institute of Footwear & Leather Technology) ;
  • Lee, Young-Hee (Department of Organic Material Science and Engineering, Busan National University) ;
  • Kim, Han-Do (Department of Organic Material Science and Engineering, Busan National University)
  • 서석훈 (부산대학교 유기소재시스템공학과) ;
  • 최필준 (한국신발피혁연구원) ;
  • 고재왕 (한국신발피혁연구원) ;
  • 박지현 (한국신발피혁연구원) ;
  • 이재년 (한국신발피혁연구원) ;
  • 이영희 (부산대학교 유기소재시스템공학과) ;
  • 김한도 (부산대학교 유기소재시스템공학과)
  • Received : 2018.11.21
  • Accepted : 2018.12.21
  • Published : 2019.03.30

Abstract

Recently, attention has been paid to obtaining bio-polyols from renewable resources. Successful use of these natural ingredients successfully produced in the industry for the synthesis of various polyurethanes is a very important task. In this study, a series of dimethylformamide (DMF) based polyurethanes were synthesized from methylene diphenyl diisocyanate (MDI)/1, 4-butanediol and bio-polyol (polytrimethylene ether glycol based on 1, 3-propanediol : B-POL)/polyester polyol (polyadipate diol based on 1,4-butandiol : H-PET). The effect of different ratio of bio-polyol (B-POL)/polyester polyol (H-PET) on the physical properties of polyurethane was investigated. As the B-POL content in B-POL/H-PET mixture increased, the glass transition of soft segment (Tgs) and tensile strength of polyurethane decreased, however, the elongation at break and tear strength increased. On the other hand, artificial leather was produced by wet process using synthesized DMF-based polyurethanes. It was found that there was almost no difference in the effect of the B-POL/H-PET composition on the average size and density (the number of cells per unit volume) of the porous cells formed in artificial leather. These results show that there is no problem in using bio-polyol (B-POL) based polyurethane for artificial leather produced by wet process.

일련의 dimethylformamide (DMF) 기반 폴리우레탄은 메틸렌 디 페닐 디 이소시아네이트(MDI) 1,4-부탄 디올 및 바이오 폴리올(1,3-프로판 디올: B-POL)에 기초한 폴리 트리 메틸렌 에테르 글리콜/폴리 에스터 폴리올(1,4-부탄디올: H-PET)으로 부터 합성하였다. 본 연구에서는 바이오 폴리올(B-POL)/폴리에스터 폴리올(H-PET)의 조성이 폴리우레탄의 물성에 미치는 영향을 조사하였다. B-POL/H-PET 혼합물의 B-POL 함량이 증가할수록 폴리우레탄의 소프트 세그먼트의 유리전이온도(Tgs)와 인장 강도는 감소하는 반면, 파괴 신도 및 인열 강도는 증가하였다. 한편 합성된 DMF 기반 폴리우레탄을 이용하여 습식공정으로 인조피혁을 제조하였다. 인조피혁에 형성된 다공성 셀의 평균 크기 및 밀도(단위부피당 셀의 수)에 미치는 B-POL/H-PET 조성의 영향의 차이는 거의 없는 것을 알 수 있었다. 이러한 결과들로부터 바이오 폴리올 기반 폴리우레탄을 습식공정으로 제조되는 인조피혁용으로 사용하는데 별 문제가 없음을 알 수 있었다.

Keywords

CJGSB2_2019_v25n1_7_f0001.png 이미지

Scheme 1. Preparation process of DMF based polyurethanes.

CJGSB2_2019_v25n1_7_f0002.png 이미지

Figure 1. Viscosity of PUs.

CJGSB2_2019_v25n1_7_f0003.png 이미지

Figure 2. FT-IR spectra of PUs.

CJGSB2_2019_v25n1_7_f0004.png 이미지

Figure 3. DSC thermograms of PU films.

CJGSB2_2019_v25n1_7_f0005.png 이미지

Figure 4. Storage modulus (a), loss modulus (b), and tan delta (c) of PU films.

CJGSB2_2019_v25n1_7_f0006.png 이미지

Figure 5. TGA (a) and DTG (b) curves of PU films.

CJGSB2_2019_v25n1_7_f0007.png 이미지

Figure 6. Stress-strain curves of PU films.

CJGSB2_2019_v25n1_7_f0008.png 이미지

Figure 7. SEM micrographs of wet-type artificial leather based on nonwoven fabrics coated with DMF based polyurethane.

Table 1. Macroglycols used in this study

CJGSB2_2019_v25n1_7_t0001.png 이미지

Table 2. Sample designation and composition of polyurethanes containing bio polyol

CJGSB2_2019_v25n1_7_t0002.png 이미지

Table 3. Thermal and mechanical properties of polyurethanes films

CJGSB2_2019_v25n1_7_t0003.png 이미지

References

  1. Hepburn, C., Polyurethane Elastomers, Elsevier, New York, 187-188 (1991).
  2. Chattopadhyay, D. K., and Raju, K. V. S. N., "Structural Engineering of Polyurethane Coatings for High Performance Applications," Prog. Polym. Sci., 32, 352-418 (2007). https://doi.org/10.1016/j.progpolymsci.2006.05.003
  3. Rahman, M. M., Hasneen, A., Lee, W. K., and Lim, K. T., "Preparation and Properties of Sol-gel Waterborne Polyurethane Adhesive," J. Sol-Gel. Sci. Technol., 67, 473-479 (2013). https://doi.org/10.1007/s10971-013-3103-9
  4. Krol, P., "Synthesis Methods, Chemical Structures and Phase Structures of Linear Polyurethanes. Properties and Applications of Linear Polyurethanes in Polyurethane Elastomers, Copolymers and Ionomers," Prog. Mater. Sci., 52, 915-1015 (2007). https://doi.org/10.1016/j.pmatsci.2006.11.001
  5. Zdrahala, R. J., and Zdrahala, I. J., "Biomedical Applications of Polyurethanes: A Review of Past Promises, Present Realities, and a Vibrant Future," J. Biomater. Appl., 14, 67-90 (1999). https://doi.org/10.1177/088532829901400104
  6. ICIS Chemical Business Americas Oct. 30th, (2011).
  7. Mohanty, A. K., Misra, M., and Hinrichsen, G., "Biofibres, Biodegradable Polymers and Bio-composites: An Overview," Macromol. Mater. Eng., 1, 276-277 (2000).
  8. http://www.etoday.co.kr/news/section/newsview.php?idxno=1422000 (accessed Dec. 2016).
  9. Hemmrich, J., Fikkert, J., and Berg, M., "Porous Structural Foams Resulting from Aggregate Modification in Polyurethane Dispersions by Means of Isothermic Foam Coagulation," J. Ind. Textil., 22(4), 268-278 (1993). https://doi.org/10.1177/152808379302200404
  10. Fukushima, O., Hayanami, H., and Nagoshi, K., "Method for Manufacturing Synthetic Leather," U. S. Patent No. 3,424,604 (1969).
  11. Kesselmeier, J., and Staudt, M., "Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology," J. Atmos. Chem., 33, 23-88 (1999). https://doi.org/10.1023/A:1006127516791
  12. Dieterich, D., Keberle, W., and Witt, H., "Polyurethane Ionomers a New Class of Block Polymers," Angew. Chem. Int. Ed. Engl., 9, 40-50 (1970). https://doi.org/10.1002/anie.197000401
  13. Billmeyer, JR. F. W., Textbook of Polymer Science, Wiley, New York, 313-326 (2003).
  14. Huang, W. M., Yang, B., and Fu, Y. Q., Polyurethane Shape Memory Polymer, CRC Press, Boca Raton, 34-36 (2003).
  15. Fried, J. R., Polymer Science and Technology, Prentice Hall PTR, New Jersey, 180-182 (2003).