• Title/Summary/Keyword: digital signal processor

Search Result 810, Processing Time 0.028 seconds

Design and Implementation of Digital Signal Processor and Development System (Digital Signal Processor와 개발시스템의 설계 및 구현)

  • Lim, Kwang Il;Lee, Woo Sun;Shin, In Chul;Rhee, Tae Won
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.6
    • /
    • pp.902-907
    • /
    • 1986
  • A real-time microprogrammable digital signal processor is designed and implemented using the bit-slice logic, a parallel multiplier, 74 series TTLs and MOS memories. A microinstruction set for the processor is defined and an application program development system is constructed. For its performance evalution, a digital filter and FFT are implemented with this digital signal processor. It is proved that this processor is faster than commrcially available single chip digital signal processors such as \ulcornerD 7720, AMI 2811, enabling very high speed digital signal processing.

  • PDF

Effects Analysis of DRAM for Digital Signal Processor Performance (디지털 신호처리 프로세서의 성능에 대한 DRAM의 영향 분석)

  • Lee, Jongbok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.177-183
    • /
    • 2018
  • Currently, digital signal processing systems are used extensively in image processing, audio processing, filtering, and equalizations, etc. In addition, the importance of DRAM, which has a great influence on the performance of an digital signal processor has been increased, making research on DRAM actively conducted in industry and academia. Therefore, it is important to have a more accurate DRAM model in order to obtain reliable results when evaluating the performance of a digital signal processor through simulation. In this paper, we developed a digital signal processor simulator capable of inter-working with a DRAM simulator. With the simulator, we analyzed the influence of the DRAM model which operates correctly on a cycle-by-cycle basis, on the performance of the digital signal processor by using the UTDSP digital signal benchmark.

Performance Study of Multicore Digital Signal Processor Architectures (멀티코어 디지털 신호처리 프로세서의 성능 연구)

  • Lee, Jongbok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.171-177
    • /
    • 2013
  • Due to the demand for high speed 3D graphic rendering, video file format conversion, compression, encryption and decryption technologies, the importance of digital signal processor system is growing rapidly. In order to satisfy the real-time constraints, high performance digital signal processor is required. Therefore, as in general purpose computer systems, digital signal processor should be designed as multicore architecture as well. Using UTDSP benchmarks as input, the trace-driven simulation has been performed and analyzed for the 2 to 16-core digital signal processor architectures with the cores from simple RISC to in-order and out-of-order superscalar processors for the various window sizes, extensively.

Implementation of Auto-tuning Positive Position Feedback Controller Using DSP Chip and Microcontroller (디지털신호처리 칩과 마이크로 컨트롤러를 이용한 자동 조정 양변위 되먹임 제어기의 구현)

  • Kwak, Moon K.;Kim, Ki-Young;Bang, Se-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.954-961
    • /
    • 2005
  • This paper is concerned with the implementation of auto-tuning positive position feedback controller using a digital signal processor and microcontroller. The main advantage of the positive position feedback controller is that it can control a natural mode of interest by tuning the filter frequency of the positive position feedback controller to the natural frequency of the target mode. However, the positive position feedback controller loses its advantage when mistuned. In this paper, the fast fourier transform algorithm is implemented on the microcontroller whereas the positive position feedback controller is implemented on the digital signal processor. After calculating the frequency which affects the vibrations of structure most, the result is transferred to the digital signal processor. The digital signal processor updates the information on the frequency to be controlled so that it can cope with both internal and external changes. The proposed scheme was installed and tested using a beam equipped with piezoceramic sensor and actuator. The experimental results show that the auto-tuning positive position feedback controller proposed in this paper can suppress vibrations even when the target structure undergoes structural change thus validating the approach.

Implementation of Adaptive Positive Popsition Feedback Controller Using DSP chip and Microcontroller (디지털신호처리 칩과 마이크로 컨트롤러를 이용한 적응 양변위 되먹임 제어기의 구현)

  • Kwak, Moon-K.;Kim, Ki-Young;Bang, Se-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.498-503
    • /
    • 2005
  • This paper is concerned with the implementation of adaptive positive position feedback controller using a digital signal processor and microcontroller The main advantage of the positive position feedback controller is that it can control a natural mode of interest by tuning the filter frequency of the positive position feedback controller to the natural frequency of the target mode. However, the positive position feedback controller loses its advantage when mistuned. In this paper, the fast fourier transform algorithm is implemented on the microcontroller whereas the positive position feedback controller is implemented on the digital signal processor. After calculating the frequency which affects the vibrations of structure most the result is transferred to the digital signal processor. The digital signal processor updates the information on the frequency to be controlled so that it can cope with both internal and external changes. The proposed scheme was installed and tested using a beam equipped with piezoceramic sensor and actuator. The experimental results show that the adaptive positive position feedback controller proposed in this paper can suppress vibrations even when the target structure undergoes structural change thus validating the approach.

  • PDF

Development of the Digital Controller for High Precision Digital Power Supply (고정밀전원장치를 위한 디지털 제어기 개발)

  • Ha, K.M.;Lee, S.K.;Kim, Y.S.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.249-250
    • /
    • 2006
  • In this paper, hardware design and implementation of digital controller for the High Precision Digital Power Supply (HPDPS) based on Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA) is presented. Developed digital controller is composed of high resolution Digital Pulse Width Modulation (DPWM) and high resolution analog to digital converter circuit with anti-aliasing filter. And Digital Signal Processor (DSP) has the capability of a few micro-second calculation time for one feedback loop. 32-bit DSP and DPWM with 150[ps] step resolution is used to implement the HPDPS. Also 18-bit 2 mega sample per second ADC board is adopted for the developed digital controller. Also, hardware structure of the developed digital controller and experimental results of the first prototype board for HPDPS is described.

  • PDF

Decomposition of EMG Signal Using MAMDF Filtering and Digital Signal Processor

  • Lee, Jin;Kim, Jong-Weon;Kim, Sung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.281-288
    • /
    • 1994
  • In this paper, a new decomposition method of the interference EMG signal using MAMDF filtering and digital signal processor. The efficient software and hardware signal processing techniques are employed. The MAMDF filter is employed in order to estimate the presence and likely location of the respective templates which may include in the observed mixture, and high-resolution waveform alignment is employed in order to provide the optimal combination set and time delays of the selected templates. The TMS320C25 digital signal processor chip is employed in order to execute the intensive calculation part of the software. The method is verified through a simulation with real templates which are obtain ed from needle EMG. As a result, the proposed method provides an overall speed improvement of 32-40 times.

  • PDF

A Study on the Bit-slice Signal Processor for the Biological Signal Processing (생체 신호처리용 Bit-slice Signal Processor에 관한 연구)

  • Kim, Yeong-Ho;Kim, Dong-Rok;Min, Byeong-Gu
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.15-22
    • /
    • 1985
  • We have developed a microprogramir!able signal processor for real-time ultrasonic signal processing. Processing speed was increased by the parallelism in horizontal microprogram using 104bits microcode and the Pipelined architecture. Control unit of the signal processor was designed by microprogrammed architec- ture and writable control store (WCS) which was interfaced with host computer, APPLE- ll . This enables the processor to develop and simulate various digital signal processing algorithms. The performance of the processor was evaluated by the Fast Fourier Transform (FFT) program. The execution time to perform 16 bit 1024 points complex FF7, radix-2 DIT algorithm, was about 175 msec with IMHz master Clock. We can use this processor to Bevelop more efficient signal processing algorithms on the biological signal processing.

  • PDF

DSP를 이용한 MSP(Multimedia Signal Processor)의 구현

  • 이준형;최윤식
    • ICROS
    • /
    • v.4 no.2
    • /
    • pp.15-17
    • /
    • 1998
  • DSP(Digital Signal Processor)는 신호처리의 응용에 있어서 실시간 처리가 요구되는 경우 탁월한 성능을 나타낸다. 멀티미디어 서비스를 위해서는 전송되어 들어오는 데이터를 빠른 시간에 처리를 하여 원하는 서비스를 제공해야 한다. 따라서 사용자 측에서는 전송된 데이터의 실시간 처리를 위한 특별한 장치가 요구된다. 본 논문에서는 이러한 용도를 위해 DSP를 이용하여 MSP(Multimedia Signal Processor)를 설계한다.

  • PDF

A calculation algorithm of transcendental functions on a digital signal processor

  • Ebina, Tsuyoshi;Ishii, Rokuya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.962-966
    • /
    • 1989
  • A Digital Signal Processor (abbreviated to DSP) is used not only for digital signal processing but also for kinematic controls[l]. Then applications to these fields are expected to be developed. We propose a function calculation method on DSP which occupies no table memory. By using these functions, more fast or more accurate control will be achieved without using function table.

  • PDF