• Title/Summary/Keyword: digital equalizer

Search Result 163, Processing Time 0.023 seconds

2D Image Construction from Low Resolution Response of a New Non-invasive Measurement for Medical Application

  • Hieda, Ichiro;Nam, Ki-Chang
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.385-393
    • /
    • 2005
  • This paper presents an application of digital signal processing to data acquired by the radio imaging method (RIM) that was adopted to measure moisture distribution inside the human body. RIM was originally developed for the mining industry; we are applying the method to a biomedical measurement because of its simplicity, economy, and safety. When a two-dimensional image was constructed from the measured data, the method provided insufficient resolution because the wavelength of the measurement medium, a weak electromagnetic wave in a VHF band, was longer than human tissues. We built and measured a phantom, a model simulating the human body, consisting of two water tanks representing large internal organs. A digital equalizer was applied to the measured values as a weight function, and images were reconstructed that corresponded to the original shape of the two water tanks. As a result, a two-dimensional image containing two individual peaks corresponding to the original two small water tanks was constructed. The result suggests the method was applicable to biomedical measurement by the assistance of digital signal processing. This technique may be applicable to home-based medical care and other situations in which safety, simplicity, and economy are important.

  • PDF

Adaptive Equalization for Reduction of Nonlinearity in High-Density Recording Channels (디지털 고밀도 기록 장치의 비선형성 감소를 위한 비선형 적응 등화기 설계)

  • 손주신;전원기;조용수;임용훈;윤대희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2397-2408
    • /
    • 1994
  • In this paper, a structure for a nonlinear adaptive equalizer is discussed to reduce nonlinearity in digital high-density recording systems. We propose a nonlinear adaptive decision feedback equalizer which can reduce the nonlinear intersymbol interference increasing with high-density recording systems, and compare its performance with the RAM-DFE which is designed to remove nonlinear intersymbol interference existing in postcursor part. By observing the output SNR of each equalizer applied to recording channels with three different densities. we confirm that the nonlinear adaptive decision feedback equalizer performs the best in the general case where nonlinear intersymbol interference exists in both precursor and postcursor parts.

  • PDF

Performance Analysis of Cyclostationary Interference Suppression for Multiuser Wired Communication Systems

  • Im, Gi-Hong;Won, Hui-Chul
    • Journal of Communications and Networks
    • /
    • v.6 no.2
    • /
    • pp.93-105
    • /
    • 2004
  • This paper discusses cyclostationary interference suppression for multiuser wired communication systems. Crosstalk interference from digital signals in multipair cables has been shown to be cyclostationary. Many crosstalk equalization or suppression techniques have been proposed which make implicit use of the cyclostationarity of the crosstalk interferer. In this paper, the convergence and steady-state behaviors of a fractionally spaced equalizer (FSE) in the presence of multiple cyclostationary crosstalk interference are thoroughly analyzed by using the equalizer's eigenstructure. The eigenvalues with multiple cyclostationary interference depend upon the folded signal and interferer power spectra, the cross power spectrum between the signal and the interferer, and tile cross power spectrum between the interferers, which results in significantly different initial convergence and steady-state behaviors as compared to the stationary noise case. The performance of the equalizer varies depending on the relative clock phase of the symbol clocks used by the signal and multiple interferers. Measued characteristics as well as analytical model of NEXT/FEXT channel are used to compute the optimum and worst relative clock phases among the signal and multiple interferers.

Sparse decision feedback equalization for underwater acoustic channel based on minimum symbol error rate

  • Wang, Zhenzhong;Chen, Fangjiong;Yu, Hua;Shan, Zhilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.617-627
    • /
    • 2021
  • Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive equalization techniques do not utilize this feature to improve the performance. In this paper we consider the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign independent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER) equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity. Simulation and real-field experimental results show that the proposed algorithm has better performance in convergence speed and Bit Error Rate (BER).

BER improvement of digital holographic optical memory system using an adaptive squalizer (적응 등화기를 이용한 디지털 홀로그래픽 광메모리 시스템의 BER 개선)

  • 최안식;백운식
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.6
    • /
    • pp.447-451
    • /
    • 2000
  • In this paper, an adaptive equalizer which has been widely used in communication channel and high-density storage system was adopted to mitigate ISI and improve BER generated during storage and retrieval process of the digital holographic memory system. Our experimental results show that the BER performance with an adaptive equalizer is improved about 19.6% on average compared to the binary-decision process by global thresholding. lding.

  • PDF

Design of the Switched-Capacitor Line Equalizer (Switched-Capacitor를 이용한 선로 등화기의 설계)

  • Jeong, Jae-Hoon;Lee, Sang-Mok;Choi, Sang-Tai;Han, Il-Song
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.990-993
    • /
    • 1987
  • A digital subscriber loop transmission is a key technology to provide end-to-end digital connectivity for Integrated Service Network. And the equalization of the signal is needed for a fully digitalized connection between subscriber's premises because of the limited transmission characteristics of existing subscriber loop. This paper describes the switched capacitor equalizer for the 2B+D data transmission in TCH on existing subscriber loops.

  • PDF

Novel Equalization On-Channel Repeater with Feedback Interference Canceller in Terrestrial Digital Multimedia Broadcasting System

  • Park, Sung-Ik;Eum, Ho-Min;Park, So-Ra;Kim, Geon;Lee, Yong-Tae;Kim, Heung-Mook;Oh, Wang-Rok
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.357-364
    • /
    • 2009
  • In this paper, we propose a novel equalization on-channel repeater (OCR) with a feedback interference canceller (FIC) to relay terrestrial digital multimedia broadcasting signals in single frequency networks. The proposed OCR not only has high output power by cancelling the feedback signals caused by insufficient antenna isolation through the FIC, but also shows better output signal quality than the conventional OCR by removing multipath signals existing between the main transmitter and the OCR through an equalizer. In addition, computer simulations and laboratory test results demonstrate that the proposed OCR successfully cancels feedback signals and compensates channel distortions and provides a higher quality transmitting signal with higher output power than conventional OCRs.

Improved Multiplication Free Adaptive Digital Filter with the Fractionally-Spaced Equalizer (분할등화기를 이용한 개선된 비적적응필터)

  • Yoon, Dal-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.137-146
    • /
    • 2002
  • In order to remove the intersymbol interference(ISI) phenomenon in data transmission channel, the structure and convergence analysis of the improved multiplication free adaptive digital filter(IMADF) is presented. Under conditions of zero-mean, wide-sense stationary and white Gaussian noise, it is shown that this paper analyze the convergence characteristics of the IMADF with a fractionally-spaced equalizer(FSE). In the experimental results, the convergence characteristics of the IMADF algorithm is almost same as the sign algorithm, but is better than the MADF algorithm. Here, this algorithm has useful characteristics when the correlation of the input signal is highly.

A Study on DCT Hierarchical LMS DFE Algorithm to Improve the Performance of ATSC Digital TV Broadcasting (ATSC 디지털 TV 방송수신 성능개선을 위한 DCT 계층적 LMS DFE 알고리즘 연구)

  • 김재욱;서종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7A
    • /
    • pp.529-536
    • /
    • 2003
  • In this Paper, a new DCT HLMS DFE(Discrete Cosine Transform Hierarchical Least Mean Square Decision Feedback Equalizer) algorithm is proposed to improve the convergence speed and MSE(Mean Square Error) performance of a receive channel equalizer in ATSC(Advanced Television System Committee) 8VSB(Vestigial Side Band) digital terrestrial TV system. The proposed algorithm reduces the eigenvalue range of input data autocorrelation by transforming LMS (Least Mean Square) DFE into the subfilter of hierarchical structure. Moreover, the use of DCT and power estimation algorithm makes it possible to reduce the eigenvalue deviation of input data which results from distortion and delay of the receive signal in the miulti-path environment. Simulation results show that proposed DCT HLMS DFE has SNR improvement of approximately 3.8dB, 5dB and 2dB as compared to LMS DFE when the equalized symbol error rate is 0.2 in ATTC defined digital terrestrial TV broadcasting channels A, B and F, respectively.

Sparse Adaptive Equalizer for ATSC DTV in Fast Fading Channels (고속페이딩 채널 극복을 위한 ATSC DTV용 스파스 적응 등화기)

  • Heo No-Ik;Oh Hae-Sock;Han Dong Seog
    • Journal of Broadcast Engineering
    • /
    • v.10 no.1 s.26
    • /
    • pp.4-13
    • /
    • 2005
  • An equalization algorithm is proposed to guarantee a stable performance in fast fading channels for digital television (DTV) systems from the advanced television system committee (ATSC) standard. In channels with high Doppler shifts, the conventional equalization algorithm shows severe performance degradation. Although the conventional equalizer compensates poor channel conditions to some degree, long filter taps required to overcome long delay profiles are not suitable for fast fading channels. The Proposed sparse equalization algorithm is robust to the multipaths with long delay Profiles as well as fast fading by utilizing channel estimation and equalizer initialization. It can compensate fast fading channels with high Doppler shifts using a filter tap selection technique as well as variable step-sizes. Under the ATSC test channels, the proposed algorithm is analyzed and compared with the conventional equalizer. Although the proposed algorithm uses small number of filter taps compared to the conventional equalizer, it is stable and has the advantages of fast convergence and channel tracking.