• Title/Summary/Keyword: digital PID control

Search Result 174, Processing Time 0.031 seconds

Multiplierless Digital PID Controller Using FPGA

  • Chivapreecha, Sorawat;Ronnarongrit, Narison;Yimman, Surapan;Pradabpet, Chusit;Dejhan, Kobchai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.758-761
    • /
    • 2004
  • This paper proposes a design and implementation of multiplierless digital PID (Proportional-Integral-Derivative) controller using FPGA (Field Programmable Gate Array) for controlling the speed of DC motor in digital system. The multiplierless PID structure is based on Distributed Arithmetic (DA). The DA is an efficient way to compute an inner product using partial products, each can be obtained by using look-up table. The PID controller is designed using MATLAB program to generate a set of coefficients associated with a desired controller characteristics. The controller coefficients are then included in VHDL (Very high speed integrated circuit Hardware Description Language) that implements the PID controller onto FPGA. MATLAB program is used to activate the PID controller, calculate and plot the time response of the control system. In addition, the hardware implementation uses VHDL and synthesis using FLEX10K Altera FPGA as target technology and use MAX+plusII program for overall development. Results in design are shown the speed performance and used area of FPGA. Finally, the experimental results can be shown when compared with the simulation results from MATLAB.

  • PDF

Design of Fuzzy Digital PID Controller Using Simplified Indirect Inference Method (간편 간접추론방법을 이용한 퍼지 디지털 PID 제어기의 설계)

  • Chai, Chang-Hyun
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.12
    • /
    • pp.69-77
    • /
    • 1999
  • This paper describes the design of fuzzy digital PID controller using simplified indirect inference method. First, the fuzzy digital PID controller is derived from the conventional continuous time linear digital PID controller. Then the fuzzification, control-rule base, and defuzzification using SIM in the design of the fuzzy digital controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional digital PID controller, which has the same linear structure, but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability, particularly when the process to be controlled is nonlinear. When the SIM is applied, the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control performance of the one proposed by D. Misir et al.

  • PDF

Improvement of a PID Function Block of a Domestic DCS (국산 분산 제어 시스템의 PID 기능 블럭 개선)

  • 변승현;마복렬
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.151-154
    • /
    • 2000
  • Used analog control systems have been converted into digital control systems due to performance degradation and difficulty of maintenance. There are few domestic DCS (Distribued Control System)s that have been applied to Bower plant. To apply a demestic DCS to power plant, the reliability, redundacny, and fault tolerance of DCS is important. Besides those items, the control action of control function block is also important. In this paper, we describe the requirements that PID control function block has to have, and implement a PID control function block that satisfies those requirements. Finally. simulation result using digital simulator for boiler system in thermal power plant shows the validity of a implemented PID control function block.

  • PDF

Speed Control of a Diesel Engine by Means of the Model Matching Method (모델 맷칭법에 의한 디젤기관의 속도제어)

  • 유희환;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.131-137
    • /
    • 1996
  • The existing digital governors are in the beginning stage. Placing the focus on the marine site, most of the digital governors developed are still using the simple PID algorithm. But, the performance of a diesel engine is widely changed according to the parameters of the PID controller. So, this article describes a new method to adjust the parameters of the PID controller in a marine digital governor. In this paper, the diesel engine is considered as a nonoscillatory second order system. A new method to adjust the parameters of the PID controller for speed control of a diesel engine is proposed by means of the model matching method. Also, the simulations by numerical methods are carried out in cases of the exact understanding or out of the parameters of a diesel engine respectively. And this paper confirms that the proposed new method here is superior to Ziegler & Nichols's method through the comparisons and analysis of the characteristics of indicial responses.

  • PDF

Analysis of computational delay effect on digital PID control system (디지틀 PIC 제어시스템의 계산 지연 영향 분석)

  • 이상정;홍석민;윤기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.529-533
    • /
    • 1990
  • This paper treats the computational time delay issue in designing digital control systems. The computational time delay margin, within which the closed-loop stability is guaranteed, is analyzed using Rouche theorem. A PID control algorithm is proposed for compensating the computational time delay. Finally, the analyzed and the exact computational time delay margins are compared, and the performance of the proposed PID controller is shown through an illustrative example.

  • PDF

An Analysis of the Limit Cycle Oscillation in Digital PID Controlled DC-DC Converters

  • Chang, Changyuan;Hong, Chao;Zhao, Xin;Wu, Cheng'en
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.686-694
    • /
    • 2017
  • Due to the wide use of electronic products, digitally controlled DC-DC converters are attracting more and more attention in recent years. However, digital control strategies may introduce undesirable Limit Cycle Oscillation (LCO) due to quantization effects in the Analog-to-Digital Converter (ADC) and Digital Pulse Width Modulator (DPWM). This results in decreases in the quality of the output voltage and the efficiency of the system. Meanwhile, even if the resolution of the DPWM is finer than that of the ADC, LCO may still exist due to improper parameters of the digital compensator. In order to discover how LCO is generated, the state space averaging model is applied to derive equilibrium equations of a digital PID controlled DC-DC converter in this paper. Furthermore, the influences of the parameters of the digital PID compensator, and the resolutions of the ADC and DPWM on LCO are studied in detail. The amplitude together with the period of LCO as well as the corresponding PID parameters are obtained. Finally, MATLAB/Simulink simulations and FPGA verifications are carried out and no-LCO conditions are obtained.

Optimized Digital Proportional Integral Derivative Controller for Heating and Cooling Injection Molding System

  • Jeong, Byeong-Ho;Kim, Nam-Hoon;Lee, Kang-Yeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1383-1388
    • /
    • 2015
  • Proportional integral derivative (PID) control is one of the conventional control strategies. Industrial PID control has many options, tools, and parameters for dealing with the wide spectrum of difficulties and opportunities in manufacturing plants. It has a simple control structure that is easy to understand and relatively easy to tune. Injection mold is warming up to the idea of cycling the tool surface temperature during the molding cycle rather than keeping it constant. This “heating and cooling” process has rapidly gained popularity abroad. However, it has discovered that raising the mold wall temperature above the resin’s glass-transition or crystalline melting temperature during the filling stage is followed by rapid cooling and improved product performance in applications from automotive to packaging to optics. In previous studies, optimization methods were mainly selected on the basis of the subjective experience. Appropriate techniques are necessary to optimize the cooling channels for the injection mold. In this study, a digital signal processor (DSP)-based PID control system is applied to injection molding machines. The main aim of this study is to optimize the control of the proposed structure, including a digital PID control method with a DSP chip in the injection molding machine.

A study on optimal position control using a microprocessor (마이크로 프로세서를 이용한 최적위치제어에 관한 연구)

  • 양주호;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.51-64
    • /
    • 1986
  • Recently, being due to development of a small microprocessor, microprocessor have found increasing application as a digital controller in the control system. In this paper, authors analyze theoretically the continuous PID controller of a position control system with servomotor, and program the microprocessor as digital PID controller by an assembly language, and search the optimal parameters of the digital PID controller which make the smallest integral square error criterion for a performance criterion, and take experiment the indicial responses with optimal parameter. The results are following. 1) PD- behavior controller was better than P-behavior controller. 2) The smaller the smapling times of P-behavior controller and PD-behavior controller were, the better the indicial responses of the discrete system were. 3) Using a small microprocessor could replace the traditional continuous PID controller for good control.

  • PDF

A Design and Control of an Active Magnetic Bearing System (능동형 자기 베어링 시스템의 설계 및 제어)

  • 김종문;최영규
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.82-89
    • /
    • 2004
  • In this paper, an active magnetic bearing(AMB) system is designed and controlled using a digital Proportional-Integral-Derivative(PID) control concept. The plant dynamics consisting of actuator and rigid rotor dynamics are described. A digital PID controller with a global control and a local control concept is designed and implemented using digital signal processor. Some experiments are conducted with each global control and local control concept. These include start-up test, impulse test, whirl response, and generator load test. The experimental results and comparison between those of a global control and a local control indicate that the global control of concept has impressive static and dynamic control performance for the prototype considered. From the whirl test, the developed system set can be controlled within about $\pm10\mu\textrm{m}$ gap variation at the rotational speed of 6000rpm and generate the AC power of frequency of $60\textrm{Hz}$, voltage of 100V and current of 0.8$\textit{A}$.

Design of Fuzzy PID Controller for Tracking Control (퍼지 PID 제어를 이용한 추종 제어기 설계)

  • Kim, Bong--Joo;Chung, Chung-Chao
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.622-631
    • /
    • 2001
  • This paper presents a fuzzy modified PID controller that uses linear fuzzy inference method. In this structure, the proportional and derivative gains vary with the output of the system under control. 2-input PD type fuzzy controller is designed to obtain the varying gains. The proposed fuzzy PID structure maintains the same performance as the same performance as the general-purpose linear PID controller, and enhances the tracking performance over a wide range of input. Numerical simulations and experimental results show the effectiveness of the fuzzy PID controller in comparison with the conventional PID controller.

  • PDF