• Title/Summary/Keyword: digesting enzyme

Search Result 40, Processing Time 0.028 seconds

Isolation of Soil Bacteria Secreting Raw-Starch-Digesting Enzyme and the Enzyme Production

  • Sung, Nack-Moon;Kim, Keun;Choi, Sung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.99-107
    • /
    • 1993
  • Two strains (No. 26 and 143) of bacteria which secrete both pectinase and raw-starch-digesting amylase simultaneously, were isolated from various domestic soil samples. The two bacteria were identified as Pasteurella ureae judging by their morphological and physiological characteristics. The optimal culture conditions for the production of raw-starch-digesting enzyme by the Pasteurella ureae 26 were using $NH_4NO_3$ as the nitrogen source at $37^{\circ}C$ with the pH of 7.5, and 15 of C/N ratio. Since the enzyme was produced only when raw or soluble starch was used as a carbon source, but not when glucose or other sugars was used, the enzyme was considered to be an inducible enzyme by starch. Thin layer chromatography of the hydrolyzed product of starch by the raw-starch-digesting enzyme of the strain No. 26 showed that glucose, maltose and other oligosaccharides were present in the hydrolyzates, and therefore the enzyme seemed to be ${\alpha}-amylase$. The enzyme had adsorbability onto raw com starch in the pH range of 3 to 9.

  • PDF

Effect of Alum on the Activity of Raw Starch-Digesting Enzyme Produced by Bacillus sp. (Bacillus sp.가 생산하는 전분 분해효소의 활성에 미치는 Alum첨가의 영향)

  • Lee, Shin-Young;Lee, Sang-Gui;Kang, Tae-Su;Lee, Myong-Yul
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.773-775
    • /
    • 1995
  • The effect of alum$(Al{\cdot}K(SO_4)_2{\cdot}12H_{2}O)$ on the activity of raw starch-digesting enzyme produced by alkali-tolerant Bacillus sp. was investigated. In adding alum of 0.5%(w/w), activities of raw starch-digesting enzyme on the gelatinized and raw rice starches have not been inhibited. In case of adding alum of 5%(w/w), competitive and uncompetitive inhibition were observed for the gelatinized and raw rice starches, respectively. The inhibitory effect on the raw starch was much higher than that on the gelatinized starch.

  • PDF

Improvement of a Fungal Strain by Repeated and Sequential Mutagenesis and Optimization of Solid-State Fermentation for the Hyper-Production of Raw-Starch-Digesting Enzyme

  • Vu, Van Hanh;Pham, Tuan Anh;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.718-726
    • /
    • 2010
  • A selected fungal strain, for production of the raw-starchdigesting enzyme by solid-state fermentation, was improved by two repeated sequential exposures to ${\gamma}$-irradiation of $Co^{60}$, ultraviolet, and four repeated treatments with Nmethyl-N'-nitrosoguanidine. The mutant strain Aspergillus sp. XN15 was chosen after a rigorous screening process, with its production of the raw-starch-digesting enzyme being twice that of usual wild varieties cultured under preoptimized conditions and in an unsupplemented medium. After 17 successive subculturings, the enzyme production of the mutant was stable. Optimal conditions for the production of the enzyme by solid-state fermentation, using wheat bran as the substrate, were accomplished for the mutant Aspergillus sp. XN15. With the optimal fermentation conditions, and a solid medium supplemented with nitrogen sources of 1% urea and 1% $NH_4NO_3$, 2.5 mM $CoSO_4$, 0.05% (v/w) Tween 80, and 1% glucose, the mutant Aspergillus sp. XN15 produced the raw-starch-digesting enzyme in quantities 19.4 times greater than a typical wild variety. Finally, XN15, through simultaneous saccharification and fermentation of a raw rice corn starch slurry, produced a high level of ethanol with $Y_{p/s}$ of 0.47 g/g.

Hydrolysis Characteristics of Amylase from Alkaline-Tolerant Bacillus sp. on the Raw Starch (알칼리 내성 Bacillus sp.가 생산하는 Amylase의 생전분 분해 특성)

  • 이신영;조택상
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.621-625
    • /
    • 1998
  • The raw starch hydrolysis by amylase prepared from alkaline-tolerant Bacillus sp. were investigated. Degree of hydrolysis(%) of 5%(w/v) raw rice, corn and potato starch by this enzyme were about 40, 25 and 20%, respectively. The hydrolysis action on raw starch by change of blue value was similar to the action pattern of exo ${\beta}$-amylase. The hydrolysis products of rice starch were mainly glucose and maltose. Oligosaccarides were also detected. From the above results, this enzyme was considered as exo type ${\alpha}$-amylase. This enzyme activity on the raw starch and the gelatinized starch were 28.40 and 86.60 IU/mg protein, respectively, and the ratio of raw starch-digesting activity to gelatinized starch-digesting activity (raw starch digestivity) was about 32%. The Km values for the raw and the gelatinized starch were 4.22 and 3.0mg/mL, respectively, and the VmaX values were 0.20 and 0.31mg/mL/min, respectively.

  • PDF

Characteristics of Raw Starch-Digesting Enzyme from Streptomyces sp. 4M-2 (Streptomyces sp. 4M-2가 생산하는 생전분 분해효소의 특성)

  • 최성현;김찬조;오만진;이종수
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.2
    • /
    • pp.136-141
    • /
    • 1989
  • A raw starch-digesting enzyme from Streptomyces sp. 4M-2 was purified by ammonium sulfate fractionation, DEAE-Sephadex A-50 column chromatography and Sephadex G-100 gel filtration. The specific activity of the purified enzyme was 51.22 RSU/mg protein and the yield was 4.5% of the total activity of the culture broth. The purified enzyme was found to be homogeneous by polyacrylamide gel electrophoresis and its molecular weight was estimated to be about 102, 000 daltons by SDS-polyacrylamide gel electrophoresis, The optimal temperature and pH for the enzyme activity were 42$^{\circ}C$ and PH 5.5, respectively. The enzyme had Km, value of 44.44mg/$m\ell$ for raw corn starch. The enzyme was activated by addition of calcium and barium ions. Corn amylose was degraded by the enzyme very easily and raw potato starch was also degraded easily. Main products of the enzymatic hydrolysis of raw corn starch were analyzed to be maltose and maltotriose. The enzyme was considered as $\alpha$-amylase.

  • PDF

Stabilization of a Raw-Starch-Digesting Amylase by Multipoint Covalent Attachment on Glutaraldehyde-Activated Amberlite Beads

  • Nwagu, Tochukwu N.;Okolo, Bartho N.;Aoyagi, Hideki
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.628-636
    • /
    • 2012
  • Raw-starch-digesting enzyme (RSDA) was immobilized on Amberlite beads by conjugation of glutaraldehyde/polyglutaraldehyde (PG)-activated beads or by crosslinking. The effect of immobilization on enzyme stability and catalytic efficiency was evaluated. Immobilization conditions greatly influenced the immobilization efficiency. Optimum pH values shifted from pH 5 to 6 for spontaneous crosslinking and sequential crosslinking, to pH 6-8 for RSDA covalently attached on polyglutaraldehyde-activated Amberlite beads, and to pH 7 for RSDA on glutaraldehyde-activated Amberlite. RSDA on glutaraldehyde-activated Amberlite beads had no loss of activity after 2 h storage at pH 9; enzyme on PG-activated beads lost 9%, whereas soluble enzyme lost 65% of its initial activity. Soluble enzyme lost 50% initial activity after 3 h incubation at $60^{\circ}C$, whereas glutaraldehyde-activated derivative lost only 7.7% initial activity. RSDA derivatives retained over 90% activity after 10 batch reuse at $40^{\circ}C$. The apparent $K_m$ of the enzyme reduced from 0.35 mg/ml to 0.32 mg/ml for RSDA on glutaraldehyde-activated RSDA but increased to 0.42 mg/ml for the PG-activated RSDA derivative. Covalent immobilization on glutaraldehyde Amberlite beads was most stable and promises to address the instability and contamination issues that impede the industrial use of RSDAs. Moreover, the cheap, porous, and non-toxic nature of Amberlite, ease of immobilization, and high yield make it more interesting for the immobilization of this enzyme.

Ethanol Production from Rice Winery Waste - Rice Wine Cake by Simultaneous Saccharification and Fermentation Without Cooking

  • Vu, Van Hanh;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1161-1168
    • /
    • 2009
  • Ethanol production by the simultaneous saccharification and fermentation (SSF) of low-value rice wine cake (RWC) without cooking was investigated. RWC is the filtered solid waste of fermented rice wine mash and contains 53% raw starch. For the SSF, the RWC slurry was mixed with the raw-starch-digesting enzyme of Rhizopus sp. and yeast, where the yeast strain was selected from 300 strains and identified as Saccharomyces cerevisiae KV25. The highest efficiency (94%) of ethanol production was achieved when the uncooked RWC slurry contained 23.03% starch. The optimal SSF conditions were determined as 1.125 units of the raw-starch-digesting enzyme per gram of RWC, a fermentation temperature of $30^{\circ}C$, slurry pH of 4.5, 36-h-old seeding culture, initial yeast cell number of $2{\times}10^7$ per ml of slurry, 17 mM of urea as the nitrogen additive, 0.25 mM of $Cu^{2+}$ as the metal ion additive, and a fermentation time of 90 h. Under these optimal conditions, the ethanol production resulting from the SSF of the uncooked RWC slurry was improved to 16.8% (v/v) from 15.1% (v/v) of pre-optimization.

Purification and Characterization of Raw Starch-Digesting Enzyme from Rhizopus oryzae (Rhizopus oryzae가 생성하는 생전분 분해효소의 정제 및 특성)

  • Kim, Chan-Jo;Oh, Man-Jin;Lee, Jong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.288-293
    • /
    • 1986
  • A raw starch-digesting enzyme from Rhizopus oryzae was purified by ammonium sulfate fractionation, DEAE-sephacel column chromatography and Sephadex G-150 gel filtration. The specific activity of purified enzyme was 45.2 Ulmg protein and the yield was 16.2%. The purified enzyme was found to be homogeneous bypolyacrylamide gel electrophoresis and its molecular weight was estimated to be 67,000 by SDS-polyacrylamide gel electrophoresis, and also the enzyme had Km value of 4.082 mg/ml for raw corn starch. The optimal temperature and pH for the enzyme activity were $50^{\circ}C$ and 4.0-5.0, respectively. Reaction product of raw corn starch by purified enzyme was glucose mainly.

  • PDF

Production and Characterization of Crystalline Cellulose-Degrading Cellulase Components from a Thermophilic and Moderately Alkalophilic Bacterium

  • Kim, Dong-Soo;Kim, Cheorl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 1992
  • A moderately thermophilic, alkalophlic and powerful crystalline cellulose-digesting bacterium, Bacillus K-12, was isolated from filter paper wastes and found to be similar to Bacillus circulans or Bacillus pumilis, except for its ability to grow at a moderately high pH and temperature. The isolate grew at a pH ranging from 6 to 10 and at a temperature ranging from 35 to $65^{\circ}C$ and produced a large amount of cellulase components containing avicelase, xylanase, CMCase, and FPase when grown in avicel medium for 5 to 7 days at $50^{\circ}C$. The crude enzyme preparation from the culture broth hydrolyzed xylan, raw starch, pullulan and ${\beta}-1,3$ glucan such as laminarin. Furthermore, the enzyme hydrolyzed crystalline cellulose to cellobiose and glucose and had a broad pH activity curve (pH 6~9). The enzyme was stable up to $70^{\circ}C$.

  • PDF

A New Raw-Starch-Digesting ${\alpha}$-Amylase: Production Under Solid-State Fermentation on Crude Millet and Biochemical Characterization

  • Maktouf, Sameh;Kamoun, Amel;Moulis, Claire;Remaud-Simeon, Magali;Ghribi, Dhouha;Chaabouni, Semia Ellouz
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.489-498
    • /
    • 2013
  • A new Bacillus strain degrading starch, named Bacillus sp. UEB-S, was isolated from a southern Tunisian area. Amylase production using solid-state fermentation on millet, an inexpensive and available agro-resource, was investigated. Response surface methodology was applied to establish the relationship between enzyme production and four variables: inoculum size, moisture-to-millet ratio, temperature, and fermentation duration. The maximum enzyme activity recovered was 680 U/g of dry substrate when using $1.38{\times}10^9$ CFU/g as inoculation level, 5.6:1 (ml/g) as moisture ratio (86%), for 4 days of cultivation at $37^{\circ}C$, which was in perfect agreement with the predicted model value. Amylase was purified by Q-Sepharose anion-exchange and Sephacryl S-200 gel filtration chromatography with a 14-fold increase in specific activity. Its molecular mass was estimated at 130 kDa. The enzyme showed maximal activity at pH 5 and $70^{\circ}C$, and efficiently hydrolyzed starch to yield glucose and maltose as end products. The enzyme proved its efficiency for digesting raw cereal below gelatinization temperature and, hence, its potentiality to be used in industrial processes.