Browse > Article
http://dx.doi.org/10.4014/jmb.0907.07001

Ethanol Production from Rice Winery Waste - Rice Wine Cake by Simultaneous Saccharification and Fermentation Without Cooking  

Vu, Van Hanh (Department of Bioscience and Biotechnology, University of Suwon)
Kim, Keun (Department of Bioscience and Biotechnology, University of Suwon)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.10, 2009 , pp. 1161-1168 More about this Journal
Abstract
Ethanol production by the simultaneous saccharification and fermentation (SSF) of low-value rice wine cake (RWC) without cooking was investigated. RWC is the filtered solid waste of fermented rice wine mash and contains 53% raw starch. For the SSF, the RWC slurry was mixed with the raw-starch-digesting enzyme of Rhizopus sp. and yeast, where the yeast strain was selected from 300 strains and identified as Saccharomyces cerevisiae KV25. The highest efficiency (94%) of ethanol production was achieved when the uncooked RWC slurry contained 23.03% starch. The optimal SSF conditions were determined as 1.125 units of the raw-starch-digesting enzyme per gram of RWC, a fermentation temperature of $30^{\circ}C$, slurry pH of 4.5, 36-h-old seeding culture, initial yeast cell number of $2{\times}10^7$ per ml of slurry, 17 mM of urea as the nitrogen additive, 0.25 mM of $Cu^{2+}$ as the metal ion additive, and a fermentation time of 90 h. Under these optimal conditions, the ethanol production resulting from the SSF of the uncooked RWC slurry was improved to 16.8% (v/v) from 15.1% (v/v) of pre-optimization.
Keywords
Rice wine cake; ethanol fermentation; raw-starch-digesting enzyme; Saccharomyces cerevisiae KV25;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Chandrasena, G., G. Walker, and H. Staioes. 1997. Use of response surfaces to investigate metal ion interactions in yeast fermentations. J. Am. Soc. Brew. Chem. 55: 24-29   ScienceOn
2 Fukushima, S. and K. Yamade. 1988. A novel process of ethanol production accompanied by extraction of sugar in cane chips. J. Ferment. Technol. 66: 423-426   DOI   ScienceOn
3 Henry, T., P. C. Iwen, and S. H. Hinrichs. 2000. Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. J. Clin. Microbiol. 38: 1510-1515   PUBMED   ScienceOn
4 Lim, Y. S., S. M. Bae, and K. Kim. 2005. Mass production of yeast spores from compressed yeast. J. Microbiol. Biotechnol. 15: 568-572   ScienceOn
5 Ratnam, B., R. S. Subba, D. Mendu, R. M. Narasimha, and C. Ayyanna. 2005. Optimization of medium constituents and fermentation conditions for the production of ethanol from palmyra jaggery using response surface methodology. World J. Microbiol. Biotechnol. 21: 399-406   DOI   ScienceOn
6 Thomas, K. C. and W. M. Ingledew. 1990. Fuel alcohol production: Effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes. Appl. Environ. Microbiol. 56:2046-2050   PUBMED   ScienceOn
7 Verma, G., P. Nigam, D. Singh, and K. Chaudhary. 2000. Bioconversion of starch to ethanol in a single-step process by co-culture of amylolytic yeasts and Saccharomyces cerevisiae 21. Bioresour. Technol. 72: 261-266   DOI   ScienceOn
8 Lee, W. G., J. S. Lee, J. P. Lee, C. S. Shin, M.S. Kim, and S. C. Park. 1996. Effect of surfactants on ethanol fermentation using glucose and cellulosic hydrolyzates. Biotechnol. Lett. 18: 299-304
9 Casey, G. P., C. A. Magnus, and W. M. Ingledew. 1984. High gravity brewing: Effects of nutrition on yeast composition, fermentative ability, and alcohol production. Appl. Environ. Microbiol. 48: 639-646   PUBMED   ScienceOn
10 Alison, M., L. M. Jones, and W. M. Ingledew. 1994. Fuel alcohol production: Optimization of temperature for efficient very-high-gravity fermentation. Appl. Environ. Microbiol. 60:1048-1051   PUBMED
11 Azenha, M., M. T. Vasconcelos, and P. M. Ferreira. 2000. The influence of Cu concentration on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol. Bioeng. 90: 163-167
12 Kelly, C. T., M. A. McTigue, E. M. Doyle, and W. M. Fogarty. 1995. The raw starch degrading alkaline amylase of Bacillus sp. IMD 370. J. Ind. Microbiol. 15: 446-448   DOI
13 O'Connor-Cox, E. S. C., J. Paik, and W. M. Ingledew. 1991. Improved ethanol yields through supplementation with excess assimilable nitrogen. J. Ind. Microbiol. 8: 45-52   DOI
14 Borrego, F., J. M. Obon, M. C$\acute{a}$novas, A. Manjon, and J. L. Iborra. 1988. pH influence on ethanol production and retained biomass in a passively immobilized Zymomonas mobilis system. Biotechnol. Lett. 10: 437-442   DOI
15 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428   DOI
16 Rose, A. H. 1987. Responses to the chemical environment, pp. 15-20. In A. H. Rose and J. S. Harrison (eds.). The Yeast, 2nd Ed. Academic Press, London
17 Isono, Y. and A. Hoshino. 2000. Production of ethanol using granulated yeast cells prepared by a spray dryer. J. Gen. Appl. Microbiol. 46: 231-234   DOI   ScienceOn
18 Zaldivar, J., J. Nielsen, and O. Olson. 2001. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl. Biochem. Biotechnol. 56: 17-34
19 Malek, A., E. Torny, B. Johan, W. Anders, G. Mats, T. Folke, and Z. Guido. 2003. The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enz. Microb. Technol. 33: 71-78   DOI   ScienceOn
20 Saha, B. C. and S. Ueda. 1983. Alcoholic fermentation of raw sweet potato by a nonconventional method using Endomycopsis fibuligera glucoamylase preparation. Biotechnol. Bioeng. 25:1181-1186   DOI   ScienceOn
21 Yamamoto, S. 1994. Raw starch-digesting enzyme (maltooligosaccharide producing type) of Zoogeloea ramigera. J. Appl. Glycosci. 41: 283-289
22 White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (eds.). PCR Protocols: A Guide to Methods and Applications. Academic Press, Inc., San Diego, CA
23 Ingledew, W. M. 2005. Improvements in alcohol technology through advancements in fermentation technology. Getreidetechnologie 59: 308-311
24 Banerjee, M., S. Debnath, and S. K. Majumdar. 1988. Production of alcohol from starch by direct fermentation. Biotechnol. Bioeng. 32: 831-834   DOI   ScienceOn
25 Blackwell, K., I. Singleton, and J. Tobin. 1995. Metal cation uptake by yeast: A review. Appl. Microbiol. Biotechnol. 43:579-584   PUBMED   ScienceOn
26 Matsumoto, N., H. Yoshizumi, S. Miyata, and S. Inoue. 1985. Development of the non-cooking and low temperature cooking systems for alcoholic fermentation of grains. Nippon Nogeikagaku Kaishi 59: 291-299   DOI
27 Akin-osanaiye, B. C., H. C. Nzelibe, and A. S. Agbaji. 2005. Production of ethanol from Carica papaya (pawpaw) agro waste: Effect of saccharification and different treatments on ethanol yield. Afr. J. Biotechnol. 4: 657-659
28 Silva, J. and R. Williams. 1993. The Biological Chemistry of the Elements. Clarendon Press, New York
29 Adesanya, O. A., K. A. Oluyemi, S. J. Josiah, R. A. Adesanya, L. A. J. Shittu, D. A. Ofusori, M. A. Bankole, and G. B. Babalola. 2008. Ethanol production by Saccharomyces cerevisiae from cassava peel hydrolysate. Internet J. Microbiol. 5(1)
30 Tang, Y. Q., K. Yoji, L. Kai, Z. A. Ming, M. Shigeru, L. W. Xiao, and K. Kenji. 2008. Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Biomass Bioener. 32: 1037-1045   DOI   ScienceOn
31 Nwabueze, T. U. and U. Otunwa. 2006. Effect of supplementation of African breadfruit (Treculia africana) hulls with organic wastes on growth characteristics of Saccharomyces cerevisiae. Afr. J. Biotechnol. 5: 1494-1498