References
- Adesanya, O. A., K. A. Oluyemi, S. J. Josiah, R. A. Adesanya, L. A. J. Shittu, D. A. Ofusori, M. A. Bankole, and G. B. Babalola. 2008. Ethanol production by Saccharomyces cerevisiae from cassava peel hydrolysate. Internet J. Microbiol. 5(1)
- Akin-osanaiye, B. C., H. C. Nzelibe, and A. S. Agbaji. 2005. Production of ethanol from Carica papaya (pawpaw) agro waste: Effect of saccharification and different treatments on ethanol yield. Afr. J. Biotechnol. 4: 657-659
- Alison, M., L. M. Jones, and W. M. Ingledew. 1994. Fuel alcohol production: Optimization of temperature for efficient very-high-gravity fermentation. Appl. Environ. Microbiol. 60:1048-1051
- Azenha, M., M. T. Vasconcelos, and P. M. Ferreira. 2000. The influence of Cu concentration on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol. Bioeng. 90: 163-167
- Banerjee, M., S. Debnath, and S. K. Majumdar. 1988. Production of alcohol from starch by direct fermentation. Biotechnol. Bioeng. 32: 831-834 https://doi.org/10.1002/bit.260320616
- Blackwell, K., I. Singleton, and J. Tobin. 1995. Metal cation uptake by yeast: A review. Appl. Microbiol. Biotechnol. 43:579-584
-
Borrego, F., J. M. Obon, M. C
$\acute{a}$ novas, A. Manjon, and J. L. Iborra. 1988. pH influence on ethanol production and retained biomass in a passively immobilized Zymomonas mobilis system. Biotechnol. Lett. 10: 437-442 https://doi.org/10.1007/BF01087446 - Casey, G. P., C. A. Magnus, and W. M. Ingledew. 1984. High gravity brewing: Effects of nutrition on yeast composition, fermentative ability, and alcohol production. Appl. Environ. Microbiol. 48: 639-646
- Chandrasena, G., G. Walker, and H. Staioes. 1997. Use of response surfaces to investigate metal ion interactions in yeast fermentations. J. Am. Soc. Brew. Chem. 55: 24-29
- Fukushima, S. and K. Yamade. 1988. A novel process of ethanol production accompanied by extraction of sugar in cane chips. J. Ferment. Technol. 66: 423-426 https://doi.org/10.1016/0385-6380(88)90009-X
- Henry, T., P. C. Iwen, and S. H. Hinrichs. 2000. Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. J. Clin. Microbiol. 38: 1510-1515
- Ingledew, W. M. 2005. Improvements in alcohol technology through advancements in fermentation technology. Getreidetechnologie 59: 308-311
- Isono, Y. and A. Hoshino. 2000. Production of ethanol using granulated yeast cells prepared by a spray dryer. J. Gen. Appl. Microbiol. 46: 231-234 https://doi.org/10.2323/jgam.46.231
- Kelly, C. T., M. A. McTigue, E. M. Doyle, and W. M. Fogarty. 1995. The raw starch degrading alkaline amylase of Bacillus sp. IMD 370. J. Ind. Microbiol. 15: 446-448 https://doi.org/10.1007/BF01569973
- Lee, W. G., J. S. Lee, J. P. Lee, C. S. Shin, M.S. Kim, and S. C. Park. 1996. Effect of surfactants on ethanol fermentation using glucose and cellulosic hydrolyzates. Biotechnol. Lett. 18: 299-304
- Lim, Y. S., S. M. Bae, and K. Kim. 2005. Mass production of yeast spores from compressed yeast. J. Microbiol. Biotechnol. 15: 568-572
- Malek, A., E. Torny, B. Johan, W. Anders, G. Mats, T. Folke, and Z. Guido. 2003. The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enz. Microb. Technol. 33: 71-78 https://doi.org/10.1016/S0141-0229(03)00087-5
- Matsumoto, N., H. Yoshizumi, S. Miyata, and S. Inoue. 1985. Development of the non-cooking and low temperature cooking systems for alcoholic fermentation of grains. Nippon Nogeikagaku Kaishi 59: 291-299 https://doi.org/10.1271/nogeikagaku1924.59.291
- Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
- Nwabueze, T. U. and U. Otunwa. 2006. Effect of supplementation of African breadfruit (Treculia africana) hulls with organic wastes on growth characteristics of Saccharomyces cerevisiae. Afr. J. Biotechnol. 5: 1494-1498
- O'Connor-Cox, E. S. C., J. Paik, and W. M. Ingledew. 1991. Improved ethanol yields through supplementation with excess assimilable nitrogen. J. Ind. Microbiol. 8: 45-52 https://doi.org/10.1007/BF01575590
- Ratnam, B., R. S. Subba, D. Mendu, R. M. Narasimha, and C. Ayyanna. 2005. Optimization of medium constituents and fermentation conditions for the production of ethanol from palmyra jaggery using response surface methodology. World J. Microbiol. Biotechnol. 21: 399-406 https://doi.org/10.1007/s11274-004-2461-4
- Rose, A. H. 1987. Responses to the chemical environment, pp. 15-20. In A. H. Rose and J. S. Harrison (eds.). The Yeast, 2nd Ed. Academic Press, London
- Saha, B. C. and S. Ueda. 1983. Alcoholic fermentation of raw sweet potato by a nonconventional method using Endomycopsis fibuligera glucoamylase preparation. Biotechnol. Bioeng. 25:1181-1186 https://doi.org/10.1002/bit.260250425
- Silva, J. and R. Williams. 1993. The Biological Chemistry of the Elements. Clarendon Press, New York
- Thomas, K. C. and W. M. Ingledew. 1990. Fuel alcohol production: Effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes. Appl. Environ. Microbiol. 56:2046-2050
- Tang, Y. Q., K. Yoji, L. Kai, Z. A. Ming, M. Shigeru, L. W. Xiao, and K. Kenji. 2008. Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Biomass Bioener. 32: 1037-1045 https://doi.org/10.1016/j.biombioe.2008.01.027
- Verma, G., P. Nigam, D. Singh, and K. Chaudhary. 2000. Bioconversion of starch to ethanol in a single-step process by co-culture of amylolytic yeasts and Saccharomyces cerevisiae 21. Bioresour. Technol. 72: 261-266 https://doi.org/10.1016/S0960-8524(99)00117-0
- White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (eds.). PCR Protocols: A Guide to Methods and Applications. Academic Press, Inc., San Diego, CA
- Yamamoto, S. 1994. Raw starch-digesting enzyme (maltooligosaccharide producing type) of Zoogeloea ramigera. J. Appl. Glycosci. 41: 283-289
- Zaldivar, J., J. Nielsen, and O. Olson. 2001. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl. Biochem. Biotechnol. 56: 17-34
Cited by
- High-Cell-Density Fed-Batch Culture of Saccharomyces cerevisiae KV-25 Using Molasses and Corn Steep Liquor vol.19, pp.12, 2009, https://doi.org/10.4014/jmb.0907.07027
- Bioethanol from sea lettuce with the use of crude enzymes derived from waste vol.13, pp.4, 2009, https://doi.org/10.1007/s10163-011-0026-9
- Construction of a Thermotolerant Saccharomyces cerevisiae Strain for Bioethanol Production with Reduced Fermentation Time and Saccharifying Enzyme Dose vol.22, pp.10, 2009, https://doi.org/10.4014/jmb.1203.03069
- Evaluation of buckwheat and barley tea wastes as ethanol fermentation substrates vol.14, pp.3, 2009, https://doi.org/10.1007/s10163-012-0059-8
- Brief Aims and Scope vol.96, pp.9, 2009, https://doi.org/10.1002/jsfa.7417
- Production of the natural iron chelator deferriferrichrysin from Aspergillus oryzae and evaluation as a novel food‐grade antioxidant vol.96, pp.9, 2016, https://doi.org/10.1002/jsfa.7469