Browse > Article
http://dx.doi.org/10.4014/jmb.1108.08070

Stabilization of a Raw-Starch-Digesting Amylase by Multipoint Covalent Attachment on Glutaraldehyde-Activated Amberlite Beads  

Nwagu, Tochukwu N. (Microbiology Department, Faculty of Biological Sciences, University of Nigeria)
Okolo, Bartho N. (Microbiology Department, Faculty of Biological Sciences, University of Nigeria)
Aoyagi, Hideki (Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.5, 2012 , pp. 628-636 More about this Journal
Abstract
Raw-starch-digesting enzyme (RSDA) was immobilized on Amberlite beads by conjugation of glutaraldehyde/polyglutaraldehyde (PG)-activated beads or by crosslinking. The effect of immobilization on enzyme stability and catalytic efficiency was evaluated. Immobilization conditions greatly influenced the immobilization efficiency. Optimum pH values shifted from pH 5 to 6 for spontaneous crosslinking and sequential crosslinking, to pH 6-8 for RSDA covalently attached on polyglutaraldehyde-activated Amberlite beads, and to pH 7 for RSDA on glutaraldehyde-activated Amberlite. RSDA on glutaraldehyde-activated Amberlite beads had no loss of activity after 2 h storage at pH 9; enzyme on PG-activated beads lost 9%, whereas soluble enzyme lost 65% of its initial activity. Soluble enzyme lost 50% initial activity after 3 h incubation at $60^{\circ}C$, whereas glutaraldehyde-activated derivative lost only 7.7% initial activity. RSDA derivatives retained over 90% activity after 10 batch reuse at $40^{\circ}C$. The apparent $K_m$ of the enzyme reduced from 0.35 mg/ml to 0.32 mg/ml for RSDA on glutaraldehyde-activated RSDA but increased to 0.42 mg/ml for the PG-activated RSDA derivative. Covalent immobilization on glutaraldehyde Amberlite beads was most stable and promises to address the instability and contamination issues that impede the industrial use of RSDAs. Moreover, the cheap, porous, and non-toxic nature of Amberlite, ease of immobilization, and high yield make it more interesting for the immobilization of this enzyme.
Keywords
Glutaraldehyde; Amberlite; immobilization; raw-starch-digesting amylase; stabilization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lo, Y. S. and C. O. Ibrahim. 2005. Some characteristics of Amberlite XAD-7-adsorbed lipase from Pseudomonas sp. AK. Malay. J. Microbiol. 1: 53-56.
2 Mason, R. D. and H. H. Weetal. 1972. Invertase covalently coupled to porous glass preparation and characterization. Biotechnol. Bioeng. 14: 637-645.   DOI   ScienceOn
3 Mateo, C., M. Palomo Jose, G. Fernandez-Lorente, R. Fernandez-Lafuente, and J. M. Guisan. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40: 1451-1463.   DOI   ScienceOn
4 Miller, G. L. 1959. Use of dinitro-salicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428.   DOI
5 Mohapatra, B. R., D. W. Gould, O. Dinardo, S. Papavinasam, D. W. Koren, and W. Revie. 2008. Effect of immobilization on kinetic and thermodynamic characteristics of sulfide oxidase from Arthrobacter species. Prep. Biochem. Biotechnol. 38: 61-73.
6 Munjal, N. and S. K. Sawhney. 2003. Stability and properties of mushroom tyrosinase entrapped in alginate, polyacrylamide and gelatin gels. Enzyme Microb. Technol. 30: 613-619.
7 Okolo, B. N., F. S. Ire, L. I. Ezeogu, C. U. Anyanwu, and F. J. C. Odibo. 2001. Purification and some properties of a novel raw starch-digesting amylase from Aspergillus carbonarius. J. Sci. Food Agric. 81: 329-336.   DOI   ScienceOn
8 Ortega, N., M. Perez-Mateos, M. C. Pilar, and M. Busto. 2009. Neutrase immobilization on alginate glutaraldehyde beads by covalent attachment. J. Agric. Food Chem. 57: 109-115.   DOI   ScienceOn
9 Fernandez, K. F., C. S. Lima, H. Pinho, and C. H. Collins. 2003. Immobilization of horseradish peroxidase on to polyaniline polymers. Process Biochem. 38: 1379-1384   DOI   ScienceOn
10 Fisher, J. 2008. Enzyme immobilization on polymeric resins: Amberlite and duolite strive to improve catalysis economics through reuse. Genet. Eng. Biotechnol. News 18: 17.
11 Hasirci, N., S. Aksoy, and H. Tumturk. 2006. Activation of poly (dimer acid-co-alkyl polyamine) particles for covalent immobilization of $\alpha$-amylase. React. Funct. Polym. 66: 1546-1551.   DOI   ScienceOn
12 Ida, I. J., T. Matsuyama, and H. Yamamoto. 2000. Immobilization of glucoamylase on ceramic membrane surfaces modified with a new method of treatment using SPCP-CVD. Biochem. Eng. J. 5: 179-186.   DOI   ScienceOn
13 Reshmi, R., G. Sanjay, and S. Sugunan. 2006. Enhanced activity and stability of $\alpha$-amylase immobilized on alumina. Catal. Commun. 7: 460-465.   DOI   ScienceOn
14 Reshmi, R., G. Sanjay, and S. Sugunan. 2007. Immobilization of $\alpha$-amylase on zirconia: A heterogeneous biocatalyst for starch hydrolysis. Catal. Commun. 8: 393-399.   DOI   ScienceOn
15 Robertson, G., D. Wang, C. Lee, K. Wasschal, M. Smith, and W. Orts. 2006. Native or raw starch digestion: A key step in energy efficient biorefining of grain. J. Agric. Food Chem. 54: 353-365.   DOI   ScienceOn
16 Rodrigues, D. S., W. Adriano, A. Mendesa, W. S. Adriano, L. Goncalves, and R. Giordano. 2008. Multipoint covalent immobilization of microbial lipase on chitosan and agarose activated by different methods. J. Mol. Catal. B Enzym. 5: 100-109.
17 Kahraman, M. V., G. Bayramoglu, N. Kayaman-Apohan, and A. Gungor. 2007. $\alpha$-Amylase immobilization on functionalized glass beads by covalent attachment. Food Chem. 104: 1385-1392.   DOI   ScienceOn
18 Yagar, H., F. Ertan, and B. Balkan. 2008. Comparison of some properties of free and immobilized $\alpha$-amylase by Aspergillus sclerotiorum in calcium alginate beads. Prep. Biochem. Biotechnol. 38: 13-23.
19 Janecek, S., B. Svensson, and E. A. MacGregor. 2003. Relation between domain evolution, specificity, and taxonomy of the $\alpha$-amylase family members containing a C-terminal starch bindingdomain. Eur. J. Biochem. 270: 635-645.   DOI   ScienceOn
20 Kahraman, M. V., G. Bayramoglu, N. Kayaman-Apohan, and A. Gungor. 2007. UV-Curable methacrylated/fumaric acid modified epoxy as a potential support for enzyme immobilization. React. Funct. Polym. 67: 1385-1392.
21 Kotwal, S. M. and V. Shankar. 2009. Immobilized invertase. Biotechnol. Adv. 27: 311-322.   DOI   ScienceOn
22 Kumari, A. and A. Kayastha. 2011. Immobilization of soybean (Glycine max) $\alpha$-amylase onto chitosan and Amberlite MB-150 beads: Optimization and characterization. J. Mol. Catal. B Enzym. 69: 8-14.   DOI   ScienceOn
23 Li, T., S. Li, N. Wang, and L. Tain. 2008. Immobilization and stabilization of pectinase by multipoint attachment onto an activated agar-gel support. Food Chem. 109: 703-708.   DOI   ScienceOn
24 Liu, X. D. and Y. Xu. 2008. A novel raw starch digesting $\alpha$-amylase from a newly isolated Bacillus sp. YX-1: Purification and characterization. Bioresour. Technol. 99: 4314-4320.
25 Busto, M. D., N. Ortega, and P. Mateoz. 2004. Characterization of microbial endo-$\beta$-glucanase immobilized in alginate beads. Acta Biotechnol. 18: 189-200.
26 Platkova, Z., M. Polakovic, M. Stefuca, M. Vandakova, and M. Antosova. 2006. Selection of carrier for immobilization of fructosyltransferase from Aureobasidium pullulans. Chem. Pap. 60: 469-472.   DOI   ScienceOn
27 Anita, A., C. A. Sastry, and M. A. Hashim. 1997. Immobilization of urease using Amberlite MB-1. Bioprocess Eng. 17: 355-399.   DOI   ScienceOn
28 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
29 Cao, L. 2005. Carrier-Bound Immobilized Enzymes: Principles, Applications and Design. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
30 Cao, L. 2005. Immobilized enzymes: Science or art? Curr. Opin. Chem. Biol. 9: 217-226.   DOI   ScienceOn
31 Chakrabarti, A. C. and K. B. Storey. 1988. Immobilization of cellulase using polyurethane foam. Appl. Biochem. Biotechnol. 19: 189-207.   DOI   ScienceOn
32 Cordeiro, C. A. M., M. L. L. Martins, and A. B. Luciano. 2002. Production and properties of $\alpha$-amylase from thermophilic Bacillus sp. Braz. J. Biotechnol. 33: 145-157.
33 Dey, G., V. Nagpal, and R. Banerjee. 2002. Immobilization of $\alpha$-amylase produced from Bacillus circulans GRS 313. Braz. Arch. Biol. Technol. 46: 167-176.
34 Dwevedi, A. and A. M. Kayastha. 2009. Stabilization of $\beta$-galactosidase (from Peas) by immobilization onto Amberlite MB-150 beads and its application in lactose hydrolysis. J. Agric. Food Chem. 57: 682-688.   DOI   ScienceOn
35 Silva, C. J. M., F. Sousa, G. Gubitz, and A. Cavaco-Paulo. 2004. Chemical modifications on proteins using glutaraldehyde. Food Technol. Biotechnol. 42: 51-56.
36 Sarikaya, E., T. Higassa, M. Adachi, and B. Mikami. 2000. Comparison of degradation abilities of $\alpha$- and $\beta$-amylases on raw starch granules. Process Biochem. 35: 711-715.   DOI   ScienceOn
37 Sharma, S., L. Agarwal, and R. K. Saxena. 2008. Purification, immobilization and characterization of tannase from Penicillium variable. Bioresour. Technol. 99: 2544-2551.   DOI   ScienceOn
38 Shewale, S. D. and A. B. Pandit. 2007. Hydrolysis of soluble starch using Bacillus licheniformis on superporous CELEBEADS. Carbohydr. Res. 342: 997-1008.   DOI   ScienceOn
39 Tanriseven, A. and Z. Olcer. 2008. A novel method for the immobilization of glucoamylase onto polyglutaraldehyde-activated gelatin. Biochem. Eng. J. 39: 430-434.   DOI   ScienceOn
40 Tiller, J. C., R. Rieseler, P. Berlin, and D. Klemm. 2002. Stabilization of activity of oxidoreductases by their immobilization onto special functionalized glass and novel aminocellulose film using different coupling agents. Biomacromolecule. 3: 1021-1029.   DOI   ScienceOn
41 Tripathi, P., A. Kumari, P. Rath, and A. Kayastha. 2007. Immobilization of amylase from mung beans (Vigna radiata) on Amberlite MB 150 and chitosan beads: A comparative study. J. Mol. Catal. B Enzym. 49: 69-74.   DOI   ScienceOn
42 Turunc, O., M. V. Kahraman, A. S. Akdemir, N. Kauahan-Apohan, and A. Gungor. 2009. Immobilization of $\alpha$-amylase onto cyclic carbonate bearing hybrid material. Food Chem. 112: 992-997.   DOI   ScienceOn
43 Varavinit, S., N. Chaokasem, and S. Shobsngob. 2002. Immobilization of a thermostable alpha amylase. Asia 28: 247-251.   DOI