• Title/Summary/Keyword: diffusivity equation

Search Result 107, Processing Time 0.024 seconds

DISPERSION OF AN AEROSOL BOLUS IN THE ALVEOLAR DUCT (폐포가 달린 도관 내에서의 입자의 분산)

  • Lee DongYoub;Lee JinWon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.697-698
    • /
    • 2002
  • The dispersion of an aerosol bolus in acinus is analyzed numerically. Model geometry is a straight duct surrounded by an axisymmetric semicircular annulus which is expanding or contracting with breathing. Unsteady Wavier-Stokes equation is solved by CFX-F3D, an FVM commercial code and the trajectory of massless particle Is computed by Lagrangian method. For steady flow with no wall motion, mean velocity of aerosol bolus in alveolated duct is a little smaller than that in straight duct and dispersion in alveolated duct is comparable with the dispersion in straight tube. For expanding duct mean velocity of aerosol bolus approaches half of that in straight tube and effective diffusivity is smaller than that of straight tube. For contracting duct mean velocity of aerosol bolus becomes slightly larger than that in straight tube and effective diffusivity is comparable with the case of straight tube.

  • PDF

Study on moisture transport in concrete in atmospheric environment

  • Zhang, Weiping;Tong, Fei;Gu, Xianglin;Xi, Yunping
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.775-793
    • /
    • 2015
  • Moisture transport in concrete in atmospheric environment was studied in this paper. Based on the simplified formula of the thickness of the adsorbed layer, the pore-size distribution function of cement paste was calculated utilizing the water adsorption isotherms. Taking into consideration of the hysteresis effect in cement paste, the moisture diffusivity of cement paste was obtained by the integration of the pore-size distribution. Concrete is regarded as a two-phase composite with cement paste and aggregate, neglecting the moisture diffusivity of aggregate, then moisture diffusivity of concrete was evaluated using the composite theory. Finally, numerical simulation of humidity response during both wetting and drying process was carried out by the finite difference method of partial differential equation for moisture transport, and the numerical results well capture the trend of the measured data.

Soil Temperature Variations in Intertidal Sediments in Geunso Bay and Seonyu Island, West Coast of Korea (서해 근소만-선유도 갯벌 퇴적층의 지온변화에 관한 연구)

  • Song, Kyu-Min
    • Ocean and Polar Research
    • /
    • v.35 no.4
    • /
    • pp.281-290
    • /
    • 2013
  • The vertical structure of sediment temperatures in the tidal flats of Geunso Bay and Seonyu Island in western Korea were measured for more than a year and analyzed. Mean temperature decreased with depth in spring and summer. On the contrary, it increased with depth in fall and winter, faithfully reflecting the seasonal variation resulting from the heating and cooling of the surface sediment. The surface sediment temperatures are shown to be strongly dependent on solar radiation, M2, and M4 tidal components. They are also weakly affected by precipitation. Thermal diffusivity of sediment is estimated at each depth and in each of the four seasons by applying the amplitude equation method. In Geunso Bay, the estimated seasonal-mean values decreased with depth, while they showed little change in Seonyu Island. Depth-averaged thermal diffusivity in Geunso Bay ($1.94 {\times}10^{-7}m^2/s$) was smaller than Seonyu Island ($2.20 {\times}10^{-7}m^2/s$). The variability of thermal diffusivity is shown to corelate with sediment composition and sorting from the grain-size analysis of intertidal sediments in Geunso Bay and Seonyu-do.

A Moisture Diffusivity Model of Hardening Concrete (경화하는 콘크리트의 수분확산도 모형)

  • Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.31-38
    • /
    • 2005
  • Concrete has higher vapor pressure than its surrounding ambient air immediately after placement. Moisture at concrete surface evaporates to the ambient air to adjust equilibrium of the vapor pressure between them. The moisture inside the concrete moves to the surface because the evaporation at the surface causes gradient of vapor pressure inside the concrete. Plastic cracking, degree of hydration, strength development, and others caused by velocity of the moisture movement significantly influences quality of concrete. In this paper, the moisture diffusivity of early-age concrete was back-calculated using governing equation of the moisture diffusion, and temperature and relative humidity of concrete measured in a laboratory. The moisture diffusivity of the concrete was modeled using the back-calculated moisture diffusivity. The relative humidity of the concrete calculated by finite element method (FEM) using the modeled moisture diffusivity as Input data coincided with the measured relative humidity well.

  • PDF

PARAMETER ESTIMATION PROBLEM FOR NONHYSTERETIC INFILTRATION IN SOIL

  • CHO, CHUNG-KI;KANG, SUNGKWON;KWON, YONGHOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.11-22
    • /
    • 2000
  • Nonhysteretic infiltration in nonswelling soil is modelled by the Burgers equation under appropriate physical conditions. For this nonlinear partial differential equation the modal approximation scheme is used for estimating parameters such as soil water diffusivity and hydraulic conductivity. The parameter estimation convergence is proved, and numerical experiments are performed.

  • PDF

A novel analytical approach for advection diffusion equation for radionuclide release from an area source

  • Esmail, S.;Agrawal, P.;Aly, Shaban
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.819-826
    • /
    • 2020
  • The method of the Laplace transform has been used to obtain an analytical solution of the three-dimensional steady state advection diffusion equation for the airborne radionuclide release from any nuclear installation such as the power reactor in an area source. The present treatment takes into account the removal of the pollutants through the nuclear reaction. We assume that the pollutants are emitted as a constant rate from the area source. This physical consideration is achieved by assuming that the vertical eddy diffusivity coefficient should be a constant. The prevailing wind speed is a constant in 𝑥- direction and a linear function of the vertical height z. The present model calculations are compared with the other models and the available data of the atmospheric dispersion experiments that were carried out in the nuclear power plant of Angra dos Reis (Brazil). The results show that the present treatment performs well as the analytical dispersion model and there is a good agreement between the values computed by our model and the observed data.

Pseudosteady-State Approach to Calculate Long-Time Performance of Closed Gas Reservoirs (유사정상상태 해법을 이용한 폐쇄 가스저류층의 장기거동 계산)

  • Lee Kun Sang
    • 한국가스학회:학술대회논문집
    • /
    • 1998.09a
    • /
    • pp.241-246
    • /
    • 1998
  • This paper considers the applicability of a pseudosteady-state approach to the long-time behavior of real gas flow in a closed reservoir. The method involves a combination of a linearized gas diffusivity equation using a normalized pseudotime and a material balance equation. Comparison with a commercial reservoir simulator showed that highly accurate values of pseudopressure drawdown and well pressure are obtained by the pseudosteady-state approach with much less computational effort.

  • PDF

LONG-TIME BEHAVIOR FOR SEMILINEAR DEGENERATE PARABOLIC EQUATIONS ON ℝN

  • Cung, The Anh;Le, Thi Thuy
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.751-766
    • /
    • 2013
  • We study the existence and long-time behavior of solutions to the following semilinear degenerate parabolic equation on $\mathbb{R}^N$: $$\frac{{\partial}u}{{\partial}t}-div({\sigma}(x){\nabla}u+{\lambda}u+f(u)=g(x)$$, under a new condition concerning a variable non-negative diffusivity ${\sigma}({\cdot})$. Some essential difficulty caused by the lack of compactness of Sobolev embeddings is overcome here by exploiting the tail-estimates method.

Growth of Silicon-Germanium Quantum-dots Through Local Enhancement of Surface Diffusivity (표면확산계수의 국소적 향상을 통한 실리콘-게르마늄 양자점의 성장)

  • Kim, Yun Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.653-657
    • /
    • 2015
  • A numerical investigation to simulate the selective growth of silicon-germanium quantum-dots via local surface diffusivity enhancement is presented. A nonlinear equation for the waviness evolution of film surface is derived to consider the effects of spatially-varying diffusivity, influenced by a surface temperature profile. Results show that the morphology of the initially planar film shapes into an undulated surface upon perturbation, and a steady-state solution describes a fully grown quantum-dot. The present study points toward a fabrication technique that can obtain selectivity for self-assembly.

Effective Diffusivity of Substrate of an Immobilized Microorganism in Ca- Alginate Gels (고정화 미생물의 기질 유효 확산)

  • 김광;선우양일;박승조
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.110-117
    • /
    • 1989
  • The fiffusion characteristics of substrate of varing biomass concentrations into and from Ca- alginate gel beads in well-stirred solutions were investigated. Ca-alginate gel beads were immobilized by Zymomonas mobilis or free from cells. The values of the diffusion coefficient of substrate were calculated by means of the method of Least squares and Random pore model. Reaction rates are expressed by the Michaelis-Menten type equation, and the results are compared with experimental data. Intraparticle effective diffusivity of substrate resistance on reaction by using immobilized Z.mobilis entrapped by Ca-alginated gel seemed to be restricted by cell density. The experimental data also indicated relationship between the effective diffusivity and the cell concentration used in the gel preparation.

  • PDF