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PARAMETER ESTIMATION PROBLEM FOR

NONHYSTERETIC INFILTRATION IN SOIL

Chung-Ki Choy, Sungkwon Kangz and YongHoon Kwon�

Abstract. Nonhysteretic in�ltration in nonswelling soil is modelled by the Burgers

equation under appropriate physical conditions. For this nonlinear partial di�erential

equation the modal approximation scheme is used for estimating parameters such as soil

water di�usivity and hydraulic conductivity. The parameter estimation convergence is

proved, and numerical experiments are performed.

0. Introduction.

The Burgers equation introduced by Burgers [6,7] as a simple mathematical model

for turbulence has been studied by many researchers in various areas such as 
uid


ows, tra�c 
ows, geophysics, and soil sciences, etc. [2,4,8,12,13,14,16,17,19,20].

In this paper, we consider the Burgers equation in the context of estimating geo-

physical parameters that control the fate and movement of rainfall in�ltration in soil.

Movement of water and soluble contaminants such as pestcides or herbicides in subsur-

face has been an important issue in soil sciences, crop/plant farms, and environmental

concerns. To predict movement of the solution in soil, geophysical parameters such as

water di�usivity and hydraulic conductivity have to be estimated accurately from �eld

sample data.

Flow in subsurface unsaturated zone is usually modelled by the Richards equation

or the Fokker-Planck di�usion-convection equation which is nonlinear in nature. These

equations are derived by combining the mass conservation equation and Darcy's law,

assuming that air e�ects and compressibility of both water and solid matrix are neg-

ligible [5,12,24]. For nonhysteretic in�ltration in nonswelling soil, when the soil water

di�usivity is constant and the unsaturated hydraulic conductivity is proportional to
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the square of the reduced water content, the Richards equation becomes the Burg-

ers equation [12]. In this paper we consider a parameter estimation problem for the

following form of Burgers equation:

(0.1)
@#

@t
= �

@2#

@z2
� 2a(#+ b)

@#

@z

with the initial and boundary conditions

(0.2) #(z; 0) = #0;

�
a(#+ b)2 � �

@#

@z

�
(0; t) = F0; #(L; t) = #L:

In (0.1)-(0.2), # is the volumetric water content, t is the time, z is the depth, F0, #0
and #L are given constants, and �, a and b are parameters to be estimated. The pa-

rameter � is the soil water di�usivity and the quantity a(#+b)2 describes the hydraulic

conductivity. Note that equation (0.1) and the 
ux boundary condition at z = 0 are

nonlinear. The model (0.1)-(0.2) describes the constant rate rainfall in�ltration in the

soil of �nite depth [16]. Here, all parameters and constants in our model (0.1)-(0.2) are

assumed to be chosen so that the in�ltration rates are less than the saturated hydraulic

conductivity, and hence the soil remains unsaturated. Finally, we assume the following

compatibility condition

(0.3) #0 = #L

holds, which implies that the initial data satis�es the given boundary condition. For

more discussions of related models, see [12,15,16,22].

For our parameter estimation problem, we will denote the parameter set by Q =

R
+
� R

+
�R

� = f(�; a; b)g, where R+ and R� denote the set of positive and negative

real numbers, respectively. The choice of this parameter set comes from the geophysical

consideration. The solution for equations (0.1)-(0.2) with a parameter q 2 Q will be

denoted by #(z; t; q). Then the parameter estimation problem is to determine the

parameters from observations.

Let To be a �xed observation time, fzig
m

i=1 a �xed set of observation points in [0;L],
and �z a su�ciently small �xed positive number. Then we de�ne a parameter-to-

output mapping � : Q! R
m as �(q) = (#1(q); : : : ; #m(q)), where

(0.4) #i(q) =
1

�z

"
zi+

1

2
�zR

zi�
1

2
�z

#(z;To; q) dz

#
:

Notice that each #i represents the averaged water contents in a small neighborhood

of zi at time To. This form of observation is chosen from the consideration that each

measurement represents an averaged water contents resided in the soil surrounding zi
rather than point observation, i.e., water contents measured at the point itself. Then

the inverse problem is to �nd the inverse mapping of �. Due to uncertain disturbances

in modelling and measurements, it is naturally suggested to consider the following

optimization problem.
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Problem (P). Let ~Q be an admissible parameter subset of the parameter space Q.

Given a set of measurements � = (�1; : : : ; �m), �nd q� 2 ~Q that minimizes the cost

functional � : ~Q! R de�ned by

�(q) := jj�(q)� �jj22 =

mX
i=1

[#i(q)� �i]
2
;

where #i(q) is de�ned in (0.4).

Note that the cost functional � is de�ned via the solution of a partial di�erential

equation. So, our parameter estimation problem is an in�nite dimensional one, and

hence, we need to approximate it by a sequence of �nite dimensional problems. The

question regarding convergence of the sequence which is called the Parameter Esti-

mation Convergence (PEC) is to be answered. Many parameter estimation problems

have been studied for models arising in groundwater 
ow (see, e.g., [1,3,25] and the

references cited there). In this paper, we propose an approximation scheme (modal

scheme) for the problem (P) and prove the convergence result of the proposed scheme.

To treat the nonlinear term ##z and the nonlinearity of the boundary conditions, the

system (0.1){(0.2) will be converted into a linear equation with linear homogeneous

boundary conditions by using appropriate change of variables. However, as a result of

this transformation the observation operator becomes more complex and nonlinear.

The numerical result of this work had been presented in [9]. In [10,11], the authors

considered the related parameter estimation problems, where the initial water distribu-

tion and the 
ux history are estimated under the assumption that all the geophysical

parameters are assumed to be known.

This paper is organized as follows. In Section 1, we describe a transformation which

leads the system (0.1)-(0.2) to a linear equation with homogenous boundary conditions,

and we formulate our problem via the transformed variables. A �nite dimensional

approximation scheme is proposed and the parameter estimation convergence of the

scheme is proved in Section 2. Some numerical simulation results for our parameter

estimation scheme are presented in Section 3, and concluding remarks are made in

Section 4.

1. Transformation.

The Burgers equation (0.1) can be transformed to a linear equation by the Cole-

Hopf transformation [13,16,17] under the compatibility conditions and the smoothness

of the solution. To change the nonhomogeneous boundary condition to a homogeneous

one, we take

(1.1) v(z; t) = �h(t; q)g(z; q) + e
a

�
[F0t�bz�

zR

0

#(x;t)dx]

;

where h(t; q) = eaF0t=� and g(z; q) = 1� [�(q)z]=[1 + �(q)L], and �(q) = a(#L + b)=�.
Then (0.1)-(0.2) are transformed to the following equation with homogeneous boundary
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conditions :

(1.2)
@v

@t
= �

@2v

@z2
� h0(t; q)g(z; q);

(1.3)

v(z; 0) = e�
(q)z � g(z; q);

v(0; t) = 0;

�
@v

@z
+ �(q)v

�
(L; t) = 0;

where 
(q) = a(#0 + b)=�. Note that �(q) = 
(q) by the compatibility condition (0.3).

From now on we �x a �nite time T � To and consider the problem (1.2){(1.3) in

the region [0;L] � [0;T]. It is well known from the linear semigroup theory that the

problem (1.2){(1.3) has a unique solution v(z; t; q) 2 C([0;T];L2(0;L)), which satis�es

v(�; t; q) 2 S for each t 2 [0;T], where

(1.4) S = f� 2 C1[0;L] j �(0) = 0; [� 0 + �(q)�] (L) = 0g

(see [21]). In particular, the solution is continuously di�erentiable with respect to the

space variable. So, once we obtain the solution v(z; t; q) of (1.2)-(1.3), the volumetric
water content #(z; t; q) can be recovered by the transformation

(1.5) #(z; t; q) = �

�

a

�
h(t; q)g0(z; q) + vz(z; t; q)

h(t; q)g(z; q) + v(z; t; q)

�
� b:

On the other hand, we note from (1.1) that the parameter-to-output mapping � : Q!

R
m is represented as �(q) = (v1(q); : : : ; vm(q)), where

vi(q) = �

1

�z

�

a
ln

�
(1.6)

v(zi +
1
2
�z;To; q) + g(zi +

1
2
�z; q)h(To; q)

v(zi �
1
2
�z;To; q) + g(zi �

1
2
�z; q)h(To; q)

�
� b;

and, hence, our inverse problem can be stated as

Problem (P). Let ~Q be an admissible parameter subset of the parameter space Q.

Given a set of measurements � = (�1; : : : ; �m), �nd q� 2 ~Q that minimizes

�(q) := jj�(q)� �jj22 =

mX
i=1

[vi(q)� �i]
2

in ~Q;

where vi(q) is given by (1.6).

To obtain the solution of (1.2){(1.3) in analytical form we construct a positive

increasing sequence f�n(q)g by solving

(1.7) �n cos�nL + �(q) sin�nL = 0
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and let

Jn(q) = 2

�
�2n(q) + �2(q)

[�2
n
(q) + �2(q)]L + �(q)

�
:

De�ne a sequence f�n(z; q)g of functions by

�n(z; q) =
p
Jn(q) sin�n(q)z:

Then f�n(z; q)g forms a complete orthonormal set in L2(0;L) and each element �n(z; q)

belongs to S, where S is given by (1.4). Thus, the solution v(z; t; q) of (1.2){(1.3) can
be represented by

(1.8) v(z; t; q) =

1X
n=1

!n(t; q)�n(z; q);

where the coe�cients !n(t; q) are to be determined. By substuting v(z; t; q) in (1.8) into
(1.2){(1.3), we obtain the following initial value problems for the coe�cients f!n(t; q)g

:

(1.9)

!0n = ���2n(q)!n � h0(t; q)

"
LR
0

g(z; q)�n(z; q) dz

#
;

!n(0) =
LR
0

[e�
z � g(z; q)] �n(z; q) dz:

It is easy to see that the solution of (1.9) is given by

!n(t; q) =�

( p
Jn(q)e

���2
n
(q)t

�n(q)[(a=�)F0 + ��2n(q)]

)�
a

�
F0e

(a=�)F0t+��
2

n
(q)t+

+

�
(��2(q)� (a=�)F0)�

2
n
(q)

�2n(q) + �2(q)

��
:

Thus, v(z; t; q) with coe�cients above is the unique solution of (1.2){(1.3), i.e., the

series (1.8) converges uniformly on [0;L] � [0;T]. More speci�cally, it is easy to show

that for each n 2 N,

(1.10) �n(q) 2 (
(2n� 1)�

2L
;
n

L
�); jJn(q)j �

2

L
;

and, hence, for all (z; t) 2 [0;L]� [0;T],���!n(t; q)pJn(q) sin�n(q)z
��� � C

n3

for some constant C independent of n. Therefore, the in�nite series in (1.8) converges

uniformly on [0;L] � [0;T]. It is clear that v(z; t; q) in (1.8) satis�es the initial and

boundary conditions (1.3). Moreover, it is easy to see that for all (z; t) 2 [0;L]� [0;T],���!n(t; q)pJn(q)�n(q) cos�n(q)z
��� � C

n2

for some constant C independent of n. Thus, the spatial derivative vz of (1.8) also

exists as a continuous function on [0;L]� [0;T].
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2. Parameter estimation scheme.

We take a compact subset ~Q of the parameter space R+ �R+ �R� as an admissible

parameter subset in Problem (P). Note that Problem (P) is in�nite dimensional one

since the solution is in the in�nite dimensional space. Thus, we need to approximate

Problem (P) by a sequence of �nite dimensional ones.

For each N 2 N and q 2 ~Q, de�ne vN (z; t; q) as the following �nite sum

(2.1) vN (z; t; q) =

NX
n=1

!n(t; q)
p
Jn(q) sin�n(q)z:

Then, vN (z; t; q) is the �nite dimensional solution of the problem (1.2){(1.3) in the

subspace generated by f�n(z; q)g1�n�N . It is clear that for each �xed q 2 ~Q, the

sequence fvN (z; t; q)g converges uniformly to the solution v(z; t; q) on [0;L] � [0;T],
and the corresponding �nite dimensional parameter estimation problem becomes :

Problem (PN). Given a set of measurements � = (�1; : : : ; �m), �nd q� 2 ~Q that

minimizes

�N (q) = jj�N (q)� �jj22 =

mX
i=1

�
vNi (q)� �i

�2
in ~Q;

where �N (q) =
�
vN1 (q); : : : ; v

N
m
(q)
�
, and

vN
i
(q) = �

1

�z

�

a
ln

�
vN (zi +

1
2
�z;To; q) + g(zi +

1
2
�z; q)h(To; q)

vN (zi �
1
2
�z;To; q) + g(zi �

1
2
�z; q)h(To; q)

�
� b:

In the rest of this section, we will show that each problem (PN ) has a solution qN and

that the sequence fqNg has a convergent subsequence which converges to a solution of

the original problem (P). A parameter estimation scheme having this property is called

a parameter estimation convergent (PEC) scheme [3,Chapter 3]. These properties will

be accomplished by showing that the true solution v(z; t; q) as well as its approximations
vN (z; t; q) are continuous with respect to the parameter q. First we prove

Lemma 2.1. If q = (�; a; b); ~q = (~�; ~a;~b) 2 ~Q, then, for each n 2 N, we have

(2.2) j�n(q)� �n(~q)j �
�

L2
j

1

�(q)
�

1

�(~q)
j =

�

L2
j

�

a(#L + b)
�

~�

~a(#L +~b)
j:

Proof. First, notice that if �(q) > �(~q), then �n(q) > �n(~q) and �n(q) � �n(~q) <
�n�1(q) � �n�1(~q) for all n 2 N. Thus, it su�ces to show the inequality (2.2) for

n = 1. From (1.7) we know that

��1(q)=�(q) = tanL�1(q); ��1(~q)=�(~q) = tanL�1(~q):
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By the Mean Value Theorem,

�1(~q)=�(~q)� �1(q)=�(q)

�1(q)� �1(~q)
=

tanL�1(q)� tanL�1(~q)

�1(q)� �1(~q)
=

L

cos2 L�
� L

for some � 2 (�1(~q); �1(q)). Therefore, by (1.10), we obtain

�1(q)� �1(~q) �
1

L
j

�1(~q)

�(~q)
�

�1(q)

�(q)
j �

�1(~q)

L
j

1

�(~q)
�

1

�(q)
j

�

�

L2
j

1

�(~q)
�

1

�(q)
j:

The proof is completed. �

Lemma 2.2. Suppose fqmg is a sequence in ~Q and qm ! q0 in ~Q. Then, for each

N 2 N,

jvN (z; t; qm)� vN (z; t; q0)j ! 0 as m!1;

uniformly in z 2 [0;L] and in t 2 [0;T].

Proof. For each n, by Lemma 2.1, we have

j sin�n(q
m)z � sin�n(q

0)zj � j�n(q
m)� �n(q

0)jL �
�

L
j

1

�(qm)
�

1

�(q0)
j;

for all z 2 [0;L]. From Lemma 2.1 and the expression of !n(t; q), we have for each n,

j

p
Jn(qm)!n(t; q

m)�
p
Jn(q0)!n(t; q

0)j ! 0 as m!1;

uniformly in t 2 [0;T]. Observing the expression (2.1) of vN the lemma follows these

estimates. �

Lemma 2.3. Suppose fqmg is a sequence in ~Q and qm ! q0 in ~Q. Then

jv(z; t; qm)� v(z; t; q0)j ! 0 as m!1;

uniformly in z 2 [0;L] and in t 2 [0;T].

Proof. First, from the compactness of ~Q and the estimate (1.10) we see that

j!n(t; q)�n(z; q)j �
C

�3
n
(q)

�

C

n3

for some constant C depending only on ~Q. So, for any given " > 0, there exists a

number M1 = M1(") such that

(2.3)

1X
n=M1

j!n(t; q)�n(z; q)j �
"

4
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for all z 2 [0;L], t 2 [0;T], and q 2 ~Q. Note that each !n(t; q)�n(z; q) is uniformly

continuous in z 2 [0;L], t 2 [0;T], and q 2 ~Q. Therefore, for the given " > 0, we can

�nd M2 = M2(") such that for any m �M2,

(2.4) j!n(t; q
m)�n(z; q

m)� !n(t; q
0)�n(z; q

0)j �
"

2M1

for all z 2 [0;L], t 2 [0;T], and for all n = 1; : : : ;M1. Thus,

jvM1(z; t; qm)� vM1(z; t; q0)j(2.5)

�

M1X
n=1

j!n(t; q
m)�n(z; q

m)� !n(t; q
0)�n(z; q

0)j

�

"

2

for all z 2 [0;L] and for all t 2 [0;T], whenever m �M2. Thus, if m � M2, from (2.3)

and (2.5), we have for all z 2 [0;L] and for all t 2 [0;T],

jv(z; t; qm)� v(z; t; q0)j � jvM1(z; t; qm)� vM1(z; t; q0)j

+

1X
n=M1

j!n(t; q
0)�n(z; q

0)j

+

1X
n=M1

j!n(t; q
m)�n(z; q

m)j

�

"

2
+

"

4
+

"

4
= ":

This completes the proof. �

From Lemma 2.2 and Lemma 2.3 we obtain

Lemma 2.4. Suppose fqNg is a sequence in ~Q and qN ! q0 in ~Q. Then

jvN (z; t; qN )� v(z; t; q0)j ! 0 as N !1;

uniformly in z 2 [0;L] and in t 2 [0;T].

It is easy to see that the parameter dependent functions g and h satisfy the similar

estimates as in Lemma 2.2. That is, if qm ! q0 in ~Q, we have

(2.6)
jg(z; qm)� g(z; q0)j ! 0;

jh(t; qm)� h(t; q0)j ! 0;

uniformly in z 2 [0;L] and in t 2 [0;T], as m goes to in�nity. Then, it is clear from

the de�nitions of � and �N , Lemma 2.2, Lemma 2.3 and the estimate (2.6) that � and
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�N are continuous. Thus, on a compact subset ~Q of Q, the problems (PN ) and (P)

always have solutions.

Now let fqNg be a sequence in ~Q such that each qN is a solution of (PN ). Since ~Q
is compact, there exists a convergent subsequence. Suppose fqNkg is such a convergent

subsequence and let qNk ! q� as k goes to in�nity. Then, by Lemma 2.4, we get

jvNk (z; t; qNk)� v(z; t; q�)j ! 0

uniformly in z 2 [0;L] and in t 2 [0;T], and hence we obtain

(2.7) j�Nk(qNk)� �(q�)j ! 0:

But, since each qNk is a solution of (PNk), we know that

(2.8) �Nk(qNk) � �Nk(~q) for all ~q 2 ~Q:

Sending k to in�nity in (2.8) we conclude that �(q�) � �(~q) for all ~q 2 ~Q, which states

that q� is a solution of Problem (P).

Consequently we have proved the following theorem.

Theorem 2.5. (PN
) is parameter estimation convergent for the problem (P).

In conclusion, if we are given a set of measurements and an admissible parameter

set, we can construct a sequence fqNg by solving the problem (PN ), and then, by

�nding subsequential limits of fqNg, we can obtain a solution to the problem (P).

3. Numerical results.

To illustrate the parameter estimation convergence we present an example. This ex-

ample was taken from [16]. All the numerical calculations in this paper were performed

on a SUN SPARC-20 workstation under the MATLAB environment.

Set

L = 25 cm ; #0 = 0:03 ; #L = 0:03 ; F0 = 2:04� 10�4 cm=min

and assume that the true parameters are given by

� = 0:2106 cm2=min ; a = 0:5928 cm=min ; b = �0:0065 cm3=cm3:

These soil properties are similar to those used in [12]. The parameters were chosen

so that they satisfy the compatibility conditions for the system (1.2){(1.3), and they

are related to nonponding in�ltration with 
uxes less than the saturated hydraulic

conductivity. Thus, the soil remains unsaturated. The observation time To = 120

minutes and the ten observation points zi = L=20 + (i � 1)L=10, i = 1; : : : ; 10, were
chosen and �z was chosen su�ciently small so that the volumetric water contents were
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assumed to be measured approximately at these ten points. Measured water contents

at the obsevation points were given by

�i = �

�

a

�
g0(zi)h(To) + ~vz(zi;To)

g(zi)h(To) + ~v(zi;To)

�
� b; 1 � i � 10;

where the approximation ~v of v was calculated by arbitrarily truncating the in�nite

series (1.8) for the true solution v at 1500 terms. Here, we did not attempt to optimize

the number of terms, since the evaluations require only a half second.

Table 1 shows the parameter estimation convergence (PEC) property for the modal

scheme. The OLS-Error in Table 1 indicates the output least squared error jj�N (qN )�

�jj22 =
P10

i=1

�
vN
i
(qN )� �i

�2
. We started with the following initial guesses

�0 = 1:0 cm2=min ; a0 = 1:0 cm=min ; b0 = �10�6 cm3=cm3:

Table 1. PEC of Modal Scheme

N � a b OLS-Error

Initial Guess 1.0000e+0 1.0000e+0 �1.0000e�6

20 3.4004e�1 7.2394e�1 �3.0000e�2 1.8091e�3

40 2.7236e�1 7.7119e�1 �3.0000e�2 2.2008e�3

80 2.2341e�1 6.3006e�1 �1.2261e�2 2.5512e�4

160 2.1247e�1 5.9806e�1 �7.3459e�3 4.7164e�5

320 2.1084e�1 5.9348e�1 �6.6096e�3 6.3273e�6

640 2.1063e�1 5.9289e�1 �6.5147e�3 8.5111e�7

1280 2.1061e�1 5.9282e�1 �6.5028e�3 1.6024e�7

True Value 2.1060e�1 5.9280e�1 �6.5000e�3

Newton's method was used to obtain eigenvalues f�ng in (1.7) with the stopping cri-

terion j�n cos�nL + � sin�nLj < 10�8. To estimate parameters, the Finite-Di�erence-

Levenberg-Marquardt method [18,23] was used. This method has been commonly used

for minimization problems with least squared error functional. In Figure 1, the curves

represent the solution #1500 with the true parameters (- - - -) and the approximation

#N with the estimated parameters (||) listed in Table 1. The symbol + represents

the observed water contents.
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Figure 1. Modal solutions and observation data

(+: observation data, - - -: solution with true parameters,

||: approximate solution with estimated parameters)

4. Conclusions.

The Burgers equation is considered as a one dimensional model for vertical non-

hysteretic in�ltration in nonswelling soil with �nite depth. We developed a systematic

approximation scheme for estimating parameters such as soil water di�usivity and con-

ductivity. The main idea dealing with nonlinearity is to change the equation into a

linear form using an appropriate transformation. Numerical experiments support the

theory regarding the parameter estimation convergence of the modal approximation

scheme.
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