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a b s t r a c t

The method of the Laplace transform has been used to obtain an analytical solution of the three-
dimensional steady state advection diffusion equation for the airborne radionuclide release from any
nuclear installation such as the power reactor in an area source. The present treatment takes into account
the removal of the pollutants through the nuclear reaction. We assume that the pollutants are emitted as
a constant rate from the area source. This physical consideration is achieved by assuming that the vertical
eddy diffusivity coefficient should be a constant. The prevailing wind speed is a constant in x� direction
and a linear function of the vertical height z. The present model calculations are compared with the other
models and the available data of the atmospheric dispersion experiments that were carried out in the
nuclear power plant of Angra dos Reis (Brazil). The results show that the present treatment performs
well as the analytical dispersion model and there is a good agreement between the values computed by
our model and the observed data.
© 2019 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The atmospheric dispersion has been performed for a hypo-
thetical accidental airborne radionuclide release from any nuclear
installation such as the power reactor, the research reactor or any
facility which uses the radioisotopes as its tools. The radioactive
materials which released from the nuclear power plant through an
experiment or eventually in an accidental events could be
dispersed in the atmosphere and result in the radiation exposure of
the human direct or by the plants or the animals. Thus, the evalu-
ation of the airborne radioactive materials transport in the atmo-
sphere is one of the requirements for safety measuring around the
nuclear power plant in the environment.

In order to analyze the possible consequences of the radioactive
release, using the atmospheric dispersion model, we need to use
the specific meteorological parameters and the conditions in the
sic and Applied Science, Jai-

Esmail), goyal.praveen2011@
.

by Elsevier Korea LLC. This is an
region. The mathematical models are the basis for prediction of the
mean concentrations of the contaminants for a given emission
source distribution. The analytical solutions of the equations are of
the fundamental importance in understanding and describing a
physical phenomena, since they allow us to take into account all the
parameters of the problem and investigate their influence such as
[19e21]. Unfortunately, no general solution is known for the
equations describing the air pollution transport and the dispersion
advection diffusion equation (ADE), but with some assumptions for
the pollutant dispersion mechanism, there are many solutions for
(ADE) for the radioactive pollutants such as Morier et al. [10,12]
who found a semi-analytical solution using multilayered method
for the time dependent ADE with the eddy diffusivity profiles and
the wind speed as function of the height z and solved ADE by the
general integral laplace transform approach. Busk et al. [6] used the
integral transform method for solving the time dependent general
ADE. Weymar et al. [17] found the solution for the time-dependent
three-dimensional advection-diffusion equation.

In the present study, we consider the ADE model which de-
scribes the ambient air concentration of the pollutants emitted
from an area source. The removal of The pollutants is taken into
account through the nuclear reaction from both a radioactive decay
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and a dry deposition. We assume that the pollutants are emitted in
a constant rate from the area source. We solved the three-
dimensional steady state ADE for the radioactive pollutants
analytically using the Laplace transform method.

The paper is organized in 5 sections. Section 1 is an introduction,
section 2 presents the mathematical formulation of the solution of
the advection-diffusion equation. Section 3 presents the applica-
tion of this solution through the experimental data of the Angra
campaign using the associated meteorological conditions [3], sec-
tion 4 presents the statistical analysis of the predicted model.
Finally, in section 5 we present the conclusion extracted from the
present study.

2. Mathematical treatment

The concentration turbulent fluxes are often assumed to be
proportional to the mean concentration gradient. This assumption,
alongwith the equation of continuity, leads to the ADE. The ADE can
be written as [2]:

vC
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where Cðx; y; zÞ denotes the concentration, kx; ky; kz are the carte-
sian components of the eddy diffusivity, u; v;w are the cartesian
components of a wind speed, x; y are the cartesian coordinates and
z is the height above the ground surface and l is the decay constant.

In order to solve equation (1) we included the following as-
sumptions: u is constant, the lateral v components of themean flow
are assumed to be zero,w ¼ bz, assume that eddy diffusivity profile
along x-direction is negligible compared to the wind velocity, ky
and kz are constants. The mean horizontal flow is horizontally
homogeneous and steady state, then, equation (1) is simplified in
the form:

u
vC
vx

þbz
vC
vz

¼ ky
v2C
vy2

þ kz
v2C
vz2

� lC (2)

The physical description of this model shown in Fig. 1 and the
Fig. 1. Diagram showing the physical description of the boundary conditions.
mathematical boundary conditions of the dispersion problem (2)
are given as

Cðx; y; zÞ¼0; at x¼0 (3)

Cðx; y; zÞ¼0; at x; y; z/±∞ (4)

kz
vC
vz

¼ 0; at z ¼ h (5)

We assume that the chemically reactive air pollutants are being
emitted at a steady rate from the ground level and they are
removed from the atmosphere by ground adsorption. Hence the
corresponding boundary condition takes the form:

kz
vC
vz

¼ vdC � Q ; at z ¼ 0 (6)

where vd is the dry deposition velocity, dðÞ is Dirac delta function, h
is the inversion height of the planetary boundary layer and Q is the
emission rate.

In the first, we obtain the cross-wind concentration by taking
integration for equation (2) with respect to y as follows [10]:

u
ð∞

�∞

vC
vx

dyþbz
ð∞

�∞

vC
vz

dy ¼ ky

ð∞
�∞

v2C
vy2

dyþ kz

ð∞
�∞

v2C
vz2

dy

� l

ð∞
�∞

Cdy (7)

From boundary condition (4) the term
R∞
�∞

v2C
vy2 dy ¼ vC

vyj∞�∞ ¼ 0,

equation (7) has the form:

u
vCy
vx

þ bz
vCy
vz

¼ kz
v2Cy
vz2

� lCy (8)

where Cy ¼ R∞�∞ Cðx; y; zÞdy is the cross-wind concentration.
Applying the Laplace transform (LT) for equation (8) with respect to
x and use the boundary condition (3), we obtain:

kz
d2~Cyðs; zÞ

dz2
� bz

d~Cyðs; zÞ
dz

�ðlþ usÞ~Cy ¼0 (9)

~Cy ¼ 0ðs; zÞ is the Laplace transform of the cross-wind concentra-
tion w.r.to x.

equation (9) is a hypergeometric differential equationwhich has
the solution in the form:

~Cyðs; zÞ¼ c1 1F1
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where: 1F1 is the first kind hypergeometric function, H�n is the
Hermite function which is defined in Refs. [14,15], and

n¼ lþ us
b

(10a)

From Ref. [4], the hermite polynomial function Hn has the
properties:

ext�t2 ¼
X∞
0

tn

n !
HnðxÞ
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From Ref. [1], the Hermite-Kamp�e de F�eriet polynomials is
defined as:
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From Ref. [4], the hermite function hn
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From the boundary condition (4), we find that:
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from the properties of hypergeometric function of the first kind
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¼ 0, so to get the definite solution taking

c2 ¼ 0 and hence the solution becomes:
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Taking Laplace transform for the boundary condition (5) after
integration w.r.to.y, we get:
kz
d~Cy

dz
¼ vd

~Cy � Qy
s
; at z ¼ 0 (12)

Substituting equation (11) into equation (12), we obtain:

~Cyðs; zÞ¼ Qy
svd

1F1

�
n

2
;
1
2
;
bz2

2kz

�
(13)

To get the closed form of the solution of our problem, we should
find the inverse of LT using the definition of the first hypergeo-
metric function [5] in the form:

1F1ða; b; xÞ¼
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ðaÞi is Pochhammer's symbol which is defined as:
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From equation (13a) and equation (14), equation (13) becomes
in the form:
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Substituting from equation (10a) into equation (16), we obtain:
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Taking inverse LT for equation (17), we get:
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Since 1
s ¼ ðsþ 1Þ�1, see Ref. [5], we obtain:
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From [7]:
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Substituting equation (19) into equation (20), we obtain:
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From equation (21) into equation (18), the cross-wind concen-
tration is:
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The cross-wind concentration becomes in the form:
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The concentration of the pollutants is defined as:

Cðx; y; zÞ¼Cyðx; zÞe
� y2

2s2y (24)

The general solution of the predicted model is:
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where sy is the lateral dispersion parameter.
2.1. The point source concentration

To perform our predicted model with the experiment model for
a point source, the predicted concentration should be obtained for a
point source. The concentration profile at ðx; yÞ due to a point
source of unit source strength may be obtained from the profile for
an area source of unit strength from Ref. [18] as follows:

Cpðx; y; zÞ¼ v2CAðx; y; zÞ
vyvx

(26)

where Cp is the point source concentration and CA is the area source
concentration which is obtained in equation (25). By substituting
from equation (25) into equation (26), we get:
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The centerline ground-level concentration is defined as [10]:

Cðx;0;0Þ¼ Cðx;0Þffiffiffiffiffiffi
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p
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(29)

The predicted centerline ground-level concentration becomes in
the form:
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2.2. Turbulent parameterizations

The turbulent parameterizations plays an important role for
contaminant dispersion modeling in the atmospheric diffusion
problems. It is an approximation for the natural phenomenon in a
view point of Physics, where details are hidden in the parameters
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used, that have to be adjusted in order to reproduce experimental
findings. For the performance of predicted model (25), the turbu-
lent parameters can be formulated as follows:

kz ¼ ku� (31)

where u� is the fraction velocity, k ¼ 0:4, for the lateral dispersion
parameter sy, from Ref. [13], it has the form:

sy
h
¼
�

0:26X
1þ 0:91X

�1
2

(32)

where X is a non-dimensional distance (X ¼ xw�=uh),w� is the
convective velocity scale with wind speed u. For the small varia-
tions of the wind direction in the relation to the position of the
receptors the expression (28) was utilized as the lateral dispersion,
along with the following expression for the large variations [13]:

sy
x
¼ sq	

1þ 0:031x0:46

 (33)

where sq ¼ 15 for the unstable/neutral conditions [2].

3. Experimental data and model evaluation

Our present model is evaluated against the experimental
ground level concentration data from the dispersion experiment
carried out at the nuclear reactor site Angra dos Reis in the Rio de
Janeiro state, Brazil. The details of the dispersion experiment is
described elsewhere [3]. The experiment consisted in the
controlled releases of the radioactive tritiated water vapour from
the meteorological tower at 100 m height during five days (28
November to 4 December 1984). During the whole experiment,
four meteorological towers collected the relevant meteorological
data. The wind speed and the direction were measured at three
levels (10m;60 m and 100 m) together with the temperature gra-
dients between 10 m and 100m. Some additional data of a relative
humidity were available in some of the sampling sites, and were
used to calculate the concentration of the radioactive tritiated
water in the air (after measuring the radioactivity of the collected
samples). All the relevant details, as well as the synoptic meteo-
rological conditions during the dispersion campaign are described
in Ref. [3]. The data collected from the 5 experiments are shown in
Table 1, w� is the convective velocity. The data are used for evalu-
ating our present model.

3.1. Comparison between our proposed approach and the
experimental one

D. M. Moreira et al. [10] used a dispersion model that employs a
new analytical solution of the advection-diffusion equation for
non-stationary and non-homogeneous conditions and radioactive
contaminant by applying the Laplace transform, considering the
Planetary boundary layer subdivided in N multilayers where the
meteorological parameters can be considered constant in a com-
plex terrain. D. M. Moreira et al. [11] developed the model for the
growth of the turbulence in convective boundary layer by applying
Table 1
The micro-meteorological parameters and the emission rate for the Angra dos Reis
experiments 2 and 3 with the period 3.

Exp. Period uðm =sÞ u�ðm =sÞ w�ðm =sÞ hðmÞ Q (MBq/s)

2 3 2.18 0.38 0.54 1133.98 25.34
3 3 2.61 0.46 0.66 1367.21 20.46
dimensional analysis to parameterize the unknown inertial trans-
port and convective source term in the dynamic equation for the
three dimensional spectrum and solved the problem using general
integral Laplace transform using micro-meteorological parameters
and wind profile generated by large eddy simulation. Buske et al.
[6] solved advection diffusion equation for the atmospheric
boundary layer where the eddy diffusivity coefficients and thewind
profile are assumed to be space dependent and solved it using in-
tegral transform and spectral theory. Convergence of the solution is
discussed in terms of a convergence criterion using a new inter-
pretation of the Cardinal Theorem of Interpolation theory and
Parseval's theorem. G.J. Weymar et al. [16] presented the dispersion
model of radioactive pollutants that undergo chemical reactions
and solved the two dimensional advection-diffusion-reaction
equation to represent the dispersion of the pollutant in the atmo-
spheric boundary layer for a source term by the combination of the
methods of separating variables with the generalized integral
Laplace transform technique. The other models were solved
considering the wind velocity along z-direction w is negligible to u
for the atmospheric boundary layer for a point source.

For the simulations we used the micro-meteorological param-
eters of the experiments 2 and 3 and in a period 3 of the Angra dos
Reis experiment (see Table 1).

In the present study we introduce b ¼ 0:001
�
w�
u

�2
; l ¼ 1:55�

10�4d�1; vd ¼ 0:005m=s, the vertical and lateral dispersion pa-
rameters (equations (33e35)) in the predicted model (equation
(32))to calculate the ground level concentration of emissions
released from an point source in an unstable/neutral atmospheric
boundary layer in centerline. In this manner the results of the
predicted model are evaluated using mathmod (mathematica and
maple programmes).

The validation of the predicted model against the experimental
data fromAngra site [3] and the other model [6] is shown in Table 2.

Fig. 2 shows the observed, the other model [6] and our predicted
results of the ground-level concentrations with a downwind
distance.
4. The statistical evaluation

The statistical analysis of the predictions and the observations is
central to the model performance evaluation. The recommenda-
tions of two workshops sponsored by the American Meteorological
Society (AMS) to review the statistical approach to the air quantity
model evaluation and the model uncertainty are summarized by
Fox [9]. The predicted and the corresponding observed concentra-
tions are treated as pairs in this evaluation.The statistical index FB
indicates whether the predicted quantities underestimate or
overestimate the observed ones. The statistical index NMSE rep-
resents the quadratic error of the predicted quantities in the rela-
tion to the observed ones. The best results are indicated by the
values nearest zero in NMSE, FB, and nearest 1 in R and FA2. The
statistical measures chosen to compare the performances of the
models described here:

(i) fractional bias FB is defined as:

FB¼ C0 � Cp
0:5
	
C0 þ Cp



where the subscripts o and p refer to the observed and the pre-
dicted values, respectively, and the overline indicate the mean
values. A good model should have FB a value close to zero.



Table 2
The comparison between the observed, the other model and the calculated concentrations (Bq=m3).

Exp. Period Distance(m) Observed (Bq=m3) ourPredictedðBq =m3Þ other model

2 3 600 0.50 0.49 0.4
2 3 610 0.58 0.56 0.4
2 3 750 0.39 0.39 0.46
2 3 815 0.61 0.60 0.47
2 3 935 0.40 0.41 0.48
2 3 1070 0.86 0.63 0.48
3 3 700 24.09 23.06 31.02
3 3 705 38.89 38.24 31.13
3 3 960 19.61 20.24 32.97
3 3 970 36.22 36.26 32.95
3 3 1070 33.50 33.63 32.44

Fig. 2. Comparison between observed, our calculated and other model concentrations (Bq=m3) with down wind distance.
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(ii) The normalized mean square error (NMSE) is defined as:

NMSE¼
	
C0 � Cp


2
C0Cp

This provides the information on the overall deviations between
the predicted and the observed concentrations. It is a dimension-
less statistic and its value should be as small as possible for a good
model.

(iii) The correlation coefficient (R) is defined as:

R¼
	
C0 � C0


	
Cp � Cp



s0sp

where s0 and sp are the standard deviations of the observed and
Table 3
Statistics indices for the predicted model.

Case FB NMSE R FA2

The predicted model 0.01 0.01 0.91 1.03
The other model 0.13 0.38 0.83 0.88
the predicted concentrations, respectively. The square of R is called
the Co-efficient of the determination and is useful measure of
performance when evaluating two or more models with the same
data set. Its value lies between 0 and 1 and for a good performance
of amodel it should be close to unity.(iv) (FA2) is the fraction of data
(%) and satisfies the equation below for a good performance of the
model

0:5� 	Cp �C0
 � 2

Table 3 presents the statistics for the normalized peak concen-
trations for the results of the experiments 2 and 3 in period 3 by our
model and the other model [6].

From the statistical method, we find that the Laplace transform
method agrees well with the observed data than Buske et al. [6]
where NMSE and FB are nearest to zero, R is nearest 1 and the
predicted model is FA2 with the observed data and is shown in
Fig. 3.
5. Summary

In this work, the three-dimensional advection diffusion equa-
tion for an air radioactive pollutant (Tritium-3) released from an
area source with constant emission rate and dry deposition for the



Fig. 3. Scatter plot of the predicted concentration is compared with the observed concentration and the other model for the experiments 2 and 3 in period 3.
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flux is solved analytically using Laplace transform method. From
the mathematical treatment, the inversion Laplace transform of
hypergeometric function of first kind is formulated analytically
using inversion Laplace transform of incomplete gamma function.
The reliability of each model strongly depends on the way of the
turbulent parameters (the wind velocity and eddy diffusivity pro-
files) which are taken and related to the current planetary
boundary layer, in the present study, the wind velocity can be taken
as function of the vertical direction z and eddy diffusivity profile
along z-direction as constant functions. The obtainedmathematical
formulae of the present model can be validated for the comparison
with the available data of the atmospheric dispersion experiments
that were carried out in the nuclear power plant of Angra dos Reis
(Brazil) for a point source. The concentration for a point source is
obtained mathematically from which is formulated for an area
source to perform the present model with the experimental data
and the previous work. The analysis of the results shows a very
good agreement between the computed values by the present
model and the observed ones when comparing to the previous
work of Busk et al. [6] which is the numerical solution of our
problem.

The good agreement between the present analytical model and
the experimental data gives us confidence to extend this work for a
future work which can be applied in the advection-diffusion reac-
tion equation involving eddy diffusivity profile as function of z, for
more than a radioactive pollutant and extends the application to
the experimental data for an area source.
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