• Title/Summary/Keyword: diffusion treatment

Search Result 793, Processing Time 0.03 seconds

Antioxidant Enzyme, Chlorophyll Contents and Stomatal Changes of Five Tree Species under Ozone Stress (저농도 오존처리에 따른 다섯 가지 유묘의 기공 변화, 엽록소 함량 및 항산화 효소 활성)

  • Ryang, Soo Zin;Woo, Su Young;Je, Sun Mi
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.4
    • /
    • pp.470-476
    • /
    • 2007
  • This study is conducted to identify responses of plants to low $O_3$ concentration, Five species, Liriodendron tulipifera, Cornus officinalis, Ginkgoba biloba, Zelkova serrata, and Acer palmatum, were exposed to low ozone concentration from June 9 to July 8 in the phytotron, We measured chlorophyll contents, leaf diffusion resistance, leaf transpiration, and antioxidant enzyme activities; ascorbate peroxidase(APX), Especially, Liriodendron tulipifera and Cornus officinalis showed sensitive responses to ozone treatment as visible injuries, while other four species relatively showed tolerant responses. However, we noticed that almost all species under ozone treatment were lower physiological activities such as chlorophyll contents, leaf diffusion resistance, leaf transpiration, and antioxidant enzyme activities with time even without any visible injury.

In vitro Study and Clinical Trial of Natural Essential Oils and Extract Against Malassezia Species

  • Lee, Min Young;Na, Eui Young;Yun, Sook Jung;Lee, Seung-Chul;Won, Young Ho;Lee, Jee-Bum
    • Journal of Mycology and Infection
    • /
    • v.23 no.4
    • /
    • pp.91-98
    • /
    • 2018
  • Background: Malassezia, a lipophilic yeast, is a causative agent for dandruff and seborrheic dermatitis. Many biological agents have been studied for anti-Malassezia effect but further studies are needed for their clinical application. Objective: The study was conducted to evaluate the inhibitory effect of different natural essential oils and a fruit extract on Malassezia species in an in vitro study and a clinical trial. Methods: The antifungal effects of natural essential oils and a fruit extract on Malassezia species (M. furfur and M. sympodialis) were evaluated by measuring the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) and using the disc diffusion method. Natural essential oils of citron seed, lavender, and rosemary and citrus junos fruit extract were used for the in vitro study. The clinical trial was conducted with a shampoo containing four ingredients. A total of 22 subjects used the shampoo every day for 4 weeks and were evaluated using clinical photography, trichoscopy, and sebumeter at baseline, 2 weeks, and 4 weeks after treatment. Results: Antifungal activity of agents was relatively lower in lavender and rosemary essential oils at MIC and MFC. Disc diffusion method revealed same results. In the clinical trial, the amount of sebum decreased statistically significantly and erythema, dandruff, and lesion extent also improved. Conclusion: The natural essential oils and fruit extract are effective for suppressing Malassezia activity, therefore these might be used as an alternative for treatment of dandruff and seborrheic dermatitis.

Application of rapid thermal annealing process to the aluminum induced crystallization of amorphous silicon thin film (비정질 실리콘의 부분적 알루미늄 유도 결정화 공정에서의 급속 열처리 적용 가능성)

  • Hwang, Ji-Hyun;Yang, Su-Won;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.50-53
    • /
    • 2019
  • In this study, polycrystalline silicon thin film useful for the solar cells was fabricated by AIC(Aluminum Induced Crystallization) process. A diffusing barrier for this process is prepared with $Al_2O_3$. For the maximization of the grain size of the polycrystalline silicon, a selective blasting of the $Al_2O_3$ diffusing barrier was conducted before annealing treatment. The heat treatment for the activation of the amorphous-Si (a-Si) layer was carried out with Rapid Thermal Annealing (RTA) process. Crystallization of the a-Si layer was analyzed with XRD. It was confirmed that a-Si was crystallized at $500^{\circ}C$ and the silicon crystal is observed to be formed and the grain size of the polycrystalline silicon was observed to be $15.9{\mu}m$.

Anticaries Effect of Ethanol Extract of Terminalia chebula

  • Lee, Moonkyung;Hwang, Young Sun
    • Journal of dental hygiene science
    • /
    • v.21 no.2
    • /
    • pp.119-126
    • /
    • 2021
  • Background: Dental caries is mainly composed of various cellular components and is deposited around the tooth surface and gums, causing a number of periodontal diseases. Streptococcus mutans is commonly found in the human oral cavity and is a significant contributor to tooth decay. The use of antibacterial ingredients in oral hygiene products has demonstrated usefulness in the management of dental caries. This study investigated the anticaries effect of the ethanol extract of Terminalia chebula (EETC) against S. mutans and their cytotoxicity to gingival epithelial cells. Methods: The EETC was prepared from T. chebula fruit using ethanol extraction. Disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and colony forming unit (CFU) were analyzed to investigate the antimicrobial activity of the EETC. Glucan formation was measured using the filtrate of the bacterial culture medium and sucrose. Gene expression was analyzed using reverse transcription-polymerase chain reaction (RT-PCR). Cytotoxicity was analyzed via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Results: The antibacterial activity of the EETC was explored using disc diffusion and CFU measurements. The MIC and MBC of the EETC were 10 and 20 ㎍/ml, respectively. EETC treatment decreased insoluble glucan formation by S. mutans enzymes and also resulted in reduced glycosyltransferase B (gtf B), gtf C, gtf D, and fructosyltransferase (ftf), expressions on RT-PCR. In addition, at effective antibacterial concentrations, EETC treatment was not cytotoxic to gingival epithelial cells. Conclusion: These results demonstrate that the EETC is an effective anticaries ingredient with low cytotoxicity to gingival epithelial cells. The EETC may be useful in antibacterial oral hygiene products for the management of dental caries.

In situ isolation and characterization of the biosurfactants of B. Subtilis

  • Akthar, Wasim S.;Aadham, Mohamed Sheik;Nisha, Arif S.
    • Advances in environmental research
    • /
    • v.9 no.3
    • /
    • pp.215-232
    • /
    • 2020
  • Crude oils are essential source of energy. It is majorly found in geographical locations beneath the earth's surface and crude oil is the main factor for the economic developments in the world. Natural crude oil contains unrefined petroleum composed of hydrocarbons of various molecular weights and it contains other organic materials like aromatic compounds, sulphur compounds, and many other organic compounds. These hydrocarbons are rapidly getting degraded by biosurfactant producing microorganisms. The present study deals with the isolation, purification, and characterization of biosurfactant producing microorganism from oil-contaminated soil. The ability of the microorganism producing biosurfactant was investigated by well diffusion method, drop collapse test, emulsification test, oil displacement activity, and blue agar plate method. The isolate obtained from the oil contaminated soil was identified as Bacillus subtilis. The identification was done by microscopic examinations and further characterization was done by Biochemical tests and 16SrRNA gene sequencing. Purification of the biosurfactant was performed by simple liquid-liquid extraction, and characterization of extracted biosurfactants was done using Fourier transform infrared spectroscopy (FTIR). The degradation of crude oil upon treatment with the partially purified biosurfactant was analyzed by FTIR spectroscopy and Gas-chromatography mass spectroscopy (GC-MS).

Liquid-liquid extraction process for gas separation from water in polymeric membrane: Mathematical modeling and simulation

  • Salimi, Nahid;Moradi, Sadegh;Fakhar, Afsaneh;Razavi, Seyed Mohammad Reza
    • Membrane and Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.463-476
    • /
    • 2016
  • In this study, application of polypropylene hollow fiber membrane contactors for $CO_2$ removal from water in liquid-liquid extraction (LLE) mode was simulated. For this purpose, a steady state 2D mathematical model was developed. In this model axial and radial diffusion was considered to $CO_2$ permeation through the hollow fibers. $CO_2$ laden water is fed at a constant flow rate into the lumen side, permeated through the pores of membrane and at the end of this process, $CO_2$ solution in the lumen side was extracted by means of aqueous diethanolamine (DEA) and chemical reaction. The simulation results were validated with the experimental data and it was found a good agreement between them, which confirmed the reliability of the proposed model. Both simulation and experimental results confirmed the reduction in the percentage of $CO_2$ removal by increment of feed flow rate.

Preparation of Electrode Using Ni-PTFE Composite Plating for Alkaline Fuel Cell (Ni-PTFE 복합도금기술을 이용한 알칼리형 연료전지용 전극 제조)

  • Kim, Jae-Ho;Lee, Young-Seak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.5
    • /
    • pp.361-370
    • /
    • 2009
  • Ni-PTFE composite plated on graphite (C/Ni-PTFE) and PTFE (PTFE/Ni-PTFE) particles were prepared uniformly by electroless composite plating. The conductivity of C/Ni-PTFE particles was 280 S/m higher than 95 S/m of PTFE/Ni-PTFE particles at same composite plating condition (Ni:35~36 wt%, PTFE:8 wt%). The C/Ni-PTFE particles were formed into the C/Ni-PTFE plate using heat treatment at $350^{\circ}C$ under 10~$1000\;kg/cm^2$. The C/Ni-PTFE plate showed 1) high conductivity of $5.7\;{\times}\;10^4\;S/m$ due to the existence of graphite as conducting aid and the formation of 3-dimensional Ni network 2) good gas diffusion caused by various pore volumes (0.01~$100\;{\mu}m$) in the plate. The plate could be useful for an electrode in an alkaline fuel cell (AFC). The current density of C/Ni-PTFE electrode indicated $84\;mA/cm^2$ at 0.3V and it was 3.0 times higher than that of PTFE/Ni-PTFE electrode.

Adsorption kinetic and mechanistic view of aqueous ferric ion onto bio-natural rice grains

  • Al-Anber, Mohammed A.
    • Membrane and Water Treatment
    • /
    • v.8 no.1
    • /
    • pp.73-88
    • /
    • 2017
  • Adsorption kinetics of aqueous ferric ion ($Fe^{3+}$) onto bio-natural rice grains (BRG) have been studied in a batch system. The influence of contact time (0-180 minutes), the dosage of BRG adsorbent (10, 20, 40, and $60gL^{-1}$), and ambient temperature (27, 37, 47, and $57^{\circ}C$) for the adsorption system have been reported. The equilibrium time achieved after 20 minutes of adsorption contact time. The maximum removal of ferric ion is 99% by using $60gL^{-1}$ of BRG, $T=37^{\circ}C$, and $50mgL^{-1}$ ferric ion solution. Adsorption kinetic and diffusion models, such as pseudo-first order, pseudo-second order, and Weber-Morris intra-particle diffusion model, have been used to describe the adsorption rate and mechanism of the ferric ion onto BRG surface. The sorption data results are fitted by Lagergren pseudo-second order model ($R^2=1.0$). The kinetic parameters, rate constant, and sorption capacities have been calculated. The new information in this study suggests that BRG could adsorb ferric ion from water physiosorption during the first 5 minutes. Afterward, the electrostatic interaction between ferric ion and BGR-surface could take place as a very weak chemisorptions process. Thus, there is no significant change could be noticed in the FTIR spectra after adsorption. I recommend producing BGR as a bio-natural filtering material for removing the ferric ion from water.

Mechanical Properties of Nitrided STS 431 Martensitic Stainless Steel by the Active Screen Ion Nitriding (활성 스크린 이온질화 처리된 마르텐사이트계 스테인리스 431강의 기계적 특성)

  • Bang, Hyun-Bae;Jung, Uoo-Chang;Jung, Won-Sub;Cha, Byung-Chul
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.4
    • /
    • pp.149-154
    • /
    • 2011
  • Martensitic stainless steel STS 431 has been nitrided by active screen ion nitriding under the various temperature and time. The thickness of diffusion layer, case depth, hardness and composition phases were investigated using field emission scanning electron microscopy (FE-SEM), micro-Vickers hardness tester, X-ray diffraction (XRD) and glow discharge spectroscopy (GDS). It was observed that the thickness of diffusion layer depends strongly on the treatment temperature and time. A sample, which was nitrided at $450^{\circ}C$ for 8hours, was a maximum hardness of Hv0.01 1558 and nitride layer of $70{\mu}m$. As shown in XRD patterns, $\varepsilon(Fe_{2-3}N)$ and expanded martensite (${\alpha}_N$) phases which was saturated with nitrogen solid solution were in the nitrided layer treated at $450^{\circ}C$ for 2 hours. Composition phases of $\varepsilon$ $(Fe_{2-3}N)$ and ${\gamma}'$ ($Fe_4N$) were observed after active screen nitriding at $450^{\circ}C$ for 8 hours.

Annealing Effect on Exchange Bias in NiFe/FeMn/CoFe Trilayer Thin Films

  • Kim, Ki-Yeon;Choi, Hyeok-Cheol;You, Chun-Yeol;Lee, Jeong-Soo
    • Journal of Magnetics
    • /
    • v.13 no.3
    • /
    • pp.97-101
    • /
    • 2008
  • We investigated the exchange bias fields at the NiFe/FeMn and FeMn/CoFe interfaces in 18.9-nm NiFe/15.0-nm FeMn/17.6-nm CoFe trilayer thin films as the annealing temperature was varied from room temperature to $250^{\circ}C$ in a vacuum for 1 hour in a magnetic field of 150 Oe. Interestingly, magnetic hysteresis (M-H) measurements showed that NiFe/FeMn/CoFe trilayer thin films exhibited a completely contrasting variation of the exchange bias fields at both the NiFe/FeMn and FeMn/CoFe interfaces with annealing temperatures. High-angle X-ray diffraction (XRD) measurements indicated the absence of any discernible effect of thermal treatment on the NiFe(111) and FeMn(111) peaks. The compositional depth profile obtained from X-ray photoelectron spectroscopy (XPS) results presented the asymmetric compositional depth profiles of the Mn and Fe atoms throughout the FeMn layer. We contend that this asymmetric compositional depth profile and the preferential Mn diffusion into the NiFe layer, compared to that into the CoFe layer, are conclusive experimental evidence of the contrasting variation of the exchange bias fields at two interfaces having a common polycrystalline FeMn(111) layer.