• Title/Summary/Keyword: difficult-to-cut materials

Search Result 115, Processing Time 0.025 seconds

Development of Ultrasonic Grinding Wheel for Hybrid Grinding System (하이브리드 연삭시스템 초음파 공구 개발)

  • Kim, Kyeong Tae;Hong, Yun Hyuck;Park, Kyung Hee;Lee, Seok Woo;Choi, Hon Zong;Choi, Young Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1121-1128
    • /
    • 2013
  • Ultrasonic grinding system is that the ultrasonic vibration by ultrasonic actuator is applied on conventional grinding system during grinding process. The Ultrasonic vibration with a frequency of over 20kHz can reduce grinding forces and increase surface quality, material removal rate (MRR) and grinding wheel life. In addition, ultrasonic vibration assisted grinding can be used for the materials that are difficult to cut. In this paper, methodology for ultrasonic tools is studied based on finite element method, and in turn the ultrasonic tools are designed and fabricated. It is found that the ultrasonic tool can vibrate with a frequency of 20kHz and amplitude of $25{\mu}m$. In order to verify the machining performance, the grinding experiment is performed on titanium alloy. By applying ultrasonic vibration, the grinding force and temperature are reduced and MRR is increased compared with the conventional grinding.

A Study on the Influence of Finishing and Polishing Methods on the Gap between Denture Base Resin and Soft Liner (의치의 마무리와 연마법이 의치상 레진과 연성 이장재 간의 공극에 미치는 영향에 관한 연구)

  • Jung, Seung-Hwan;Lee, Joon-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.4
    • /
    • pp.325-335
    • /
    • 2008
  • The junction between resilient denture liner and the denture base is difficult to finish and polish due to difference of the physical property of the materials. Gaps tend to be formed during finishing and polishing procedures. The purpose of this study was measuring the width of junctional gap between $Molloplast-B^{(R)}$ and denture base material after finishing and polishing procedure, and evaluating the effect of method and direction on gap width. $Molloplast-B^{(R)}$ was processed (according to the manufacturer's instruction) against Lucitone $199^{(R)}$ acrylic resin. 50 specimens were fabricated with a raised center section. All of specimens were examined and photographed with a stereoscopic microscope(x120), and the largest gap along the junction of $Molloplast-B^{(R)}$ and acrylic resin on each specimen was measured. One-way analysis of variance(ANOVA) and independent t-test at 95% confidence level were used to analyze the data and to compare groups. The results of this study were as follows. In comparison with finishing tools, the gap width was the largest in $Molloplast^{(R)}$-Cutter and the smallest in FSQ-cross cut bur. There was statistically significant difference between FSQ-cross cut bur and $Molloplast^{(R)}$-Cutter(p<0.05). There was no significant difference in gap width between the direction of polishing. The mean value of gap width was the smallest in case of no polishing, and the largest in case of polishing with pumice & tin oxide. There was statistically significant difference between pumice and pumice & tin oxide. From the results, it is concluded that the use of $Molloplast^{(R)}$-Cutter in clinic need serious consideration even though it has good cutting ability. Further careful study is needed for finishing and polishing methods for decreasing gap width in junction of two materials.

Reliability Verification of FLUKA Transport Code for Double Layered X-ray Protective Sheet Design (이중 구조의 X선 차폐시트 설계를 위한 FLUKA 수송코드의 신뢰성 검증)

  • Kang, Sang Sik;Heo, Seung Wook;Choi, Il Hong;Jun, Jae Hoon;Yang, Sung Woo;Kim, Kyo Tae;Heo, Ye Ji;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.547-553
    • /
    • 2017
  • In the current medical field, lead is widely used as a radiation shield. However, the lead weight is very heavy, so wearing protective clothing such as apron is difficult to wear for long periods of time and there is a problem with the danger of lethal toxicity in humans. Recently, many studies have been conducted to develop substitute materials of lead to resolve these problems. As a substitute materials for lead, barium(Ba) and iodine(I) have excellent shielding ability. But, It has characteristics emitting characteristic X-rays from the energy area near 30 keV. For patients or radiation workers, shielding materials is often made into contact with the human body. Therefore, the characteristic X-rays generated by the shielding material are directly exposured in the human body, which increases the risk of increasing radiation absorbed dose. In this study, we have developed the FLUKA transport code, one of the most suitable elements of radiation transport codes, to remove the characteristic X-rays generated by barium or iodine. We have verified the reliability of the shielding fraction of the structure of the structure shielding by comparing with the MCPDX simulations conducted as a prior study. Using the MCNPX and FLUKA, the double layer shielding structures with the various thickness combination consisting of barium sulphate ($BaSO_4$) and bismuth oxide($Bi_2O_3$) are designed. The accuracy of the type shown in IEC 61331-1 was geometrically identical to the simulation. In addition, the transmission spectrum and absorbed dose of the shielding material for the successive x-rays of 120 kVp spectra were compared with lead. In results, $0.3mm-BaSO_4/0.3mm-Bi_2O_3$ and $0.1mm-BaSO_4/0.5mm-Bi_2O_3$ structures have been absorbed in both 33 keV and 37 keV characteristic X-rays. In addition, for high-energy X-rays greater than 90 keV, the shielding efficiency was shown close to lead. Also, the transport code of the FLUKA's photon transport code was showed cut-off on low-energy X-rays(below 33keV) and is limited to computerized X-rays of the low-energy X-rays. But, In high-energy areas above 40 keV, the relative error with MCNPX was found to be highly reliable within 6 %.

Progress of Composite Fabrication Technologies with the Use of Machinery

  • Choi, Byung-Keun;Kim, Yun-Hae;Ha, Jin-Cheol;Lee, Jin-Woo;Park, Jun-Mu;Park, Soo-Jeong;Moon, Kyung-Man;Chung, Won-Jee;Kim, Man-Soo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • A Macroscopic combination of two or more distinct materials is commonly referred to as a "Composite Material", having been designed mechanically and chemically superior in function and characteristic than its individual constituent materials. Composite materials are used not only for aerospace and military, but also heavily used in boat/ship building and general composite industries which we are seeing increasingly more. Regardless of the various applications for composite materials, the industry is still limited and requires better fabrication technology and methodology in order to expand and grow. An example of this is that the majority of fabrication facilities nearby still use an antiquated wet lay-up process where fabrication still requires manual hand labor in a 3D environment impeding productivity of composite product design advancement. As an expert in the advanced composites field, I have developed fabrication skills with the use of machinery based on my past composite experience. In autumn 2011, the Korea government confirmed to fund my project. It is the development of a composite sanding machine. I began development of this semi-robotic prototype beginning in 2009. It has possibilities of replacing or augmenting the exhaustive and difficult jobs performed by human hands, such as sanding, grinding, blasting, and polishing in most often, very awkward conditions, and is also will boost productivity, improve surface quality, cut abrasive costs, eliminate vibration injuries, and protect workers from exposure to dust and airborne contamination. Ease of control and operation of the equipment in or outside of the sanding room is a key benefit to end-users. It will prove to be much more economical than normal robotics and minimize errors that commonly occur in factories. The key components and their technologies are a 360 degree rotational shoulder and a wrist that is controlled under PLC controller and joystick manual mode. Development on both of the key modules is complete and are now operational. The Korean government fund boosted my development and I expect to complete full scale development no later than 3rd quarter 2012. Even with the advantages of composite materials, there is still the need to repair or to maintain composite products with a higher level of technology. I have learned many composite repair skills on composite airframe since many composite fabrication skills including repair, requires training for non aerospace applications. The wind energy market is now requiring much larger blades in order to generate more electrical energy for wind farms. One single blade is commonly 50 meters or longer now. When a wind blade becomes damaged from external forces, on-site repair is required on the columns even under strong wind and freezing temperature conditions. In order to correctly obtain polymerization, the repair must be performed on the damaged area within a very limited time. The use of pre-impregnated glass fabric and heating silicone pad and a hot bonder acting precise heating control are surely required.

A STUDY ON MICROLEAKAGE OF PREVENTIVE RESIN RESTORATION (예방적 레진수복의 미세누출에 관한 연구)

  • Koo, Hyun-Jung;Lee, Sang-Hoon;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.504-511
    • /
    • 2001
  • Preventive resin restoration, extended concept of occlusal pit and fissure sealing, is procedure composed of as follows. Cavity preparation is limited to areas of initial caries The cavity is then restored with composite resin, while other sound pits and fissures are sealed with pit and fissure sealant. If pit and assure sealant with which microrestoration is possible is used, it may be of great benefit to both patient and operator in case of difficult-to-control children s treatment. However study on preventive resin restoration using this kind of materials have been scarce. The purpose of this study was to compare the microleakage of four different modes of preventive resin restoration. Restoration using only composite resin was compared together Fifty-five bicuspids were prepared with small class I cavity preparation on the occlusal surface, divided into the following groups and restored accordingly. Group 1 : Cavity was restored with Z-100 composite resin Group 2 : Cavity was restored with Z-100 composite resin. Pits and fissures were then sealed with Teethmate F-1 Group 3 : Cavity was restored with Z-100 composite resin Pits and fissures were then sealed with Ultraseal XT-plus Group 4 : Cavity and pits and fissures were restored with Ultraseal XT-plus altogrether Group 5 : Cavity was restored with Ultraseal XT-plus. Pits and fissures were then sealed with the same material. After restoration, the samples were thermocycled 500 times between $5^{\circ}C$ and $55^{\circ}C$ with a dwell time of 30 seconds. After thermocycling, the samples were dipped into 1% methylene blue solution for 24 hours, then rinsed with tap water. The teeth were then embedded in resin and cut buccolingually along the tooth axis and observed with a stereomicroscope to determine the degree of microleakage. The results were as follows : 1. Group 4 showed the greatest microleakage, while group 3, showed the least. The mean microleakage decreased in the following order:4>1>5>2>3. 2. There was no stastically significant difference between group 1 and group 5(p>0.05). However, group 1 showed significantly greater microleakage compared to group 2 and 3(p<0.05) Group 1 showed significantly less microleakage compared to group 4(p<0.05). 3. Group 2 showed no statistically significant difference compared to group 3(p>0.05). However group 2 showed significantly less microleakage compared to group 4 and 5(p<0.05) 4. Group 3 showed significantly less microleakage compared to group 4 and 5(p<0.05). 5. Group 5 showed significantly less microleakage than group 4(p<0.05).

  • PDF