• Title/Summary/Keyword: differential thermal gravimetric analysis

Search Result 51, Processing Time 0.021 seconds

Morphological, Thermal and Dynamic Mechanical Properties of Polyurethane Product with Various Contents of Acrylic Polyol (Acrylic Polyol 함량을 달리한 폴리우레탄 제품의 형태학적 열적 및 동적·기계적 성질)

  • Kim, Tae Sung;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.48 no.4
    • /
    • pp.276-281
    • /
    • 2013
  • Polyester type polyurethane foam modified with acrylic polyol was prepared by quasi prepolymer method. Thermal and dynamic mechanical properties of polyurethane foam were analysed by thermal gravimetric analysis(TGA) and dynamic mechanical analysis(DMA). Also, glass transition temperature was measured by differential scanning calorimeter(DSC). As acrylic polyol contents were increased, thermal stability measured by TGA was slightly decreased. Storage modulus was increased and tan delta was decreased with increasing of acrylic polyol contents.

An Experimental Study on Measurement of Chemical Kinetic Parameters of a Liquid Fuel with Various Components (혼합 액체 연료의 화학반응 인자 계측에 관한 실험적 연구)

  • Choi, Hyo-Hyun;Lim, Jun-Seok;Kim, Chul-Jin;Sohn, Chae-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.3
    • /
    • pp.21-26
    • /
    • 2011
  • Thermal analyses are conducted to measure chemical kinetic parameters of an unknown liquid fuel with various components. Thermal Analyses are divided into two different methods such as TGA(Thermo-Gravimetric Analysis) and DSC(Differential Scanning Calorimety). Non-isothermal experimental results are analyzed by adopting TGA and they are filtered by Freeman-Carroll method. As a results of the analysis, chemical parameters of the activation temperature and the reaction order are measured to be 6128.2 K and 1.4, respectively. Furthermore, the chemical kinetic parameters are obtained by a variety of mathematical processing methods. It has been found that they show a little difference depending on the processing method.

The Thermal Stability Analysis of Fumes and Mists During the Drying Process of a PCB (PCB 건조공정의 흄과 미스트에 대한 열안정성 분석)

  • Chu, Chang Yeop;Lee, Jung Suk;Baek, Jong Bae
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.32-40
    • /
    • 2019
  • During the manufacturing process of a printed circuit board(PCB), fumes and mists are generated as the ink dries on the PCB surface. The generated fumes and mists are deposited in the dryer wall and the exhaust duct. Deposited fumes and mists may present a fire hazard if the dryer temperature control system fails. In this study, the thermal stability of the fumes and mists deposited in the dryer and ducts has been analyzed by experimental methods such as thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), auto ignition temperature (AIT), and multiple mode calorimetry(MMC). According to the experimental analyses, experimental samples are likely to generate gas at the temperature ($180{\sim}240^{\circ}C$) that deviates from the normal operating temperature ($150{\sim}156^{\circ}C$). It has been shown that the thermal stability is degraded when the temperature is deviated from the normal operating temperature. In the end, engineering and management safety measures of accidental prevention have been suggested.

Measurement of Carbonation Depth of Concrete in Old Buildings and Experimental Evaluation of Carbonation Degree and CO2 Absorption Using Differential Thermal Gravimetric Analysis, Part2 (노후 건축물의 콘크리트 탄산화 깊이 측정과 시차열 중량분석을 통한 탄산화도 및 CO2 흡수량 실험적 평가, Part2)

  • Lee, Sang-Hyun;Ki, Jun-Do;Cho, Hong-Bum;Park, Chang-Gun;Kim, Young-Sun;Moon, Hyung-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.317-318
    • /
    • 2023
  • This study is part of the carbonation degree DB accumulation through quantitative analysis of carbonation depth, Ca(OH)2 and CO2 according to the type of finish and years of use of old concrete structures in order to predict the amount of CO2 that can be absorbed through carbonation of concrete. To this end, the depth of carbonation of the concrete core specimen is measured using an indicator, and the dry amount of water combined with CO2 in the sample is measured using a differential thermal gravimetric analyzer for samples in the carbonation area and non-carbonated area classified by the indicator, and the absorption compared to the weight of the sample. The amount of absorbed CO2 was calculated. In addition, the degree of carbonation was calculated through quantitative comparison of Ca(OH)2 in the carbonation section and non-carbonation section. In the future, we will continue to add the survey and analysis data of dismantled structures and use them as basic data for estimating the amount of carbon dioxide that can be absorbed according to the exposure conditions and years of use by concrete mix.

  • PDF

An Experimental Study on Measurement of the Reaction Order of a Liquid Fuel with Various Components (혼합 액체연료의 화학반응차수 계측에 관한 실험적 연구)

  • Choi, Hyo-Hyun;Lim, Jun-Seok;Kim, Chul-Jin;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.421-424
    • /
    • 2011
  • Thermal Analyses are conducted to measure various factors of a liquid fuel required for numerical analysis. Thermal Analyses are divided into two different methods of TGA (Thermo Gravimetric Analysis) and DSC (Differential Scanning Calorimetry). Non-isothermal experimental results are analyzed using by TGA. The results are filtered by a Freeman Carroll method. At the same time, chemical parameters of unknown liquid fuel, activation temperature and reaction order are measured to 6128.2 K and 1.4, respectively. Furthermore, the parameters can be obtained by various mathematical methods. It is found that tha parameters depend on the processing method.

  • PDF

Measurement of carbonation depth of concrete in old buildings and experimental evaluation of carbonation degree and CO2 absorption using differential thermal gravimetric analysis (노후 건축물의 콘크리트 탄산화 깊이 측정과 시차열 중량분석을 통한 탄산화도 및 CO2 흡수량 실험적 평가)

  • Lee, Sang-Hyun;Ki, Jun-Do;Cho, Hong-Bum;Park, Chang-Gun;Kim, Young-Sun;Moon, Hyung-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.197-198
    • /
    • 2022
  • Based on the carbonation depth measurement by the indicator for concrete collected from old structures and the quantitative analysis of Ca(OH)2 and CO2 in the carbonation section before and after the carbonation depth and in the non-carbonation section, the absorbable CO2 amount and carbonation degree measurement result is as follows 1) The carbonation depth of the 40-year-old reinforced concrete structure was measured to be about 22 mm. (basement interior wall, marble finish, strength 30MPa) 2) The amount of CO2 absorbed by the concrete was about 4.3% of the sample weight, and the carbonation degree was estimated to be about 53%.

  • PDF

Synthesis and Physical Properties of Decylbithiophene End-Capped Oligomers Based on Naphthalene, Anthracene and Benzo[1,2-b:4,5-b']dithiophene

  • Jang, Sang-Hun;Tai, Truong Ba;Kim, Min-Kyu;Han, Jeong-Woo;Kim, Yun-Hi;Shin, Sung-Chul;Yoon, Yong-Jin;Kwon, Soon-Ki;Lee, Sang-Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.618-622
    • /
    • 2009
  • The new candidates for OTFTs, which were composed of naphthalene, anthracene, benzo[1,2-b:4,5-b’]dithiophene and 2-decylbithiophene end-capper were synthesized under Suzuki coupling reaction conditions. All of the oligomers were characterized by FT-IR, mass analysis, UV-vis, PL spectrum, cyclic voltametry (CV), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), $^1H-NMR\;and\;^{13}C-NMR$. Investigation of physical properties showed that all of the oligomers have higher oxidation potential and good thermal stability. Especially, DBT-DtB-DBT is soluble in common solvents and suitable for low cost processing technologies.

석탄회를 이용한 요오드화세슘의 포집특성 분석

  • 박장진;신진명;전관식;김연구;박현수
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.403-408
    • /
    • 1996
  • 석탄화력발전소 폐기물인 석탄회와 요오드화 세슘의 반응특성을 DTA(Differential Thermal Analysis), TGA(Thermo-Gravimetric Analysis) 장치를 이용하여 분석하였다. 본연구에 사용된 석탄회는 85%의 실리카와 알루미나를 함유하고 있으며 Si/Al 몰비는 2.1 이었다. DTA와 TGA의 열분석 결과 CsI의 분해, 석탄회와 기체상 세슘의 반응 등으로 이루어져 있다. 석탄회와 CsI의 혼합물은 94$0^{\circ}C$ 이상에서 Pollucite 가 형성되었다. 반응생성물들의 SEM 분석결과 표면이 거칠며 bulky한 crystal 형태로서 구형의 석탄회와는 매우 다른 형상을 보였다. 석탄회는 요오드화세슘의 고정화를 위해서 적합한 알루미노규산염 원료물질들 중의 하나임을 확인하였다.

  • PDF

Hot stage microscopy and its applications in pharmaceutical characterization

  • Arun Kumar;Pritam Singh;Arun Nanda
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.12.1-12.11
    • /
    • 2020
  • Hot stage microscopy (HSM) is a thermal analysis technique that combines the best properties of thermal analysis and microscopy. HSM is rapidly gaining interest in pharmaceuticals as well as in other fields as a regular characterization technique. In pharmaceuticals HSM is used to support differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA) observations and to detect small changes in the sample that may be missed by DSC and TGA during a thermal experiment. Study of various physical and chemical properties such sample morphology, crystalline nature, polymorphism, desolvation, miscibility, melting, solid state transitions and incompatibility between various pharmaceutical compounds can be carried out using HSM. HSM is also widely used to screen cocrystals, excipients and polymers for solid dispersions. With the advancements in research methodologies, it is now possible to use HSM in conjunction with other characterization techniques such as Fourier transform infrared spectroscopy (FTIR), DSC, Raman spectroscopy, scanning electron microscopy (SEM) which may have additional benefits over traditional characterization techniques for rapid and comprehensive solid state characterization.

A Prediction of Remaining Service Life of Concrete for Irrigation Structure by Measuring Carbonation (중성화 측정을 통한 콘크리트의 잔존수명 예측)

  • 이준구;박광수;신수균;김관호;윤성수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.773-778
    • /
    • 2002
  • The variance characteristics of the calcium carbonate contents along to the concrete cover depth takes the prediction method of remaining service life of concrete. Calcium carbonate contents were measured by the Thermo Gravimetric/Differential Thermal Analysis method at three point, depth of 0.25cm, 0.75cm, 1.25cm from the surface of concrete. This prediction method contain some assumption that the chemical protection conferred on steel is through a passive protective oxide film which forms on steel in an environment at or above a pH of 10.5$^{4)}$ .

  • PDF