• Title/Summary/Keyword: differential conductivity

Search Result 137, Processing Time 0.021 seconds

Measurement and Verification of Thermal Conductivity of Multilayer Thin Dielectric Film via Differential $3\omega$ Method (차등 $3\omega$ 기법을 이용한 다층 유전체 박막의 열전도도 측정 및 검증)

  • Shin, Sang-Woo;Cho, Han-Na;Cho, Hyung-Hee
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.85-90
    • /
    • 2006
  • In this study, measurement of thermal conductivity of multilayer thin dielectric film has been conducted via differential $3\omega$ method. Also, verification of differential $3\omega$ method has been accomplished with various proposed criteria. The target film for the measurement is 300 nm thick silicon dioxide which is covered with upper protective layer of various thicknesses. The upper protective layer is inserted between the target film and the heater line for purpose of electrical insulator or anti-oxidation barrier since the target film may be a good electrical conductor or a well-oxidizing material. Since the verification of differential $3\omega$ method has not been conducted yet, we have shown that the measurement of thermal conductivity of thin films with upper protective layer via differential $3\omega$ method is verified to be reliable as long as the proposed preconditions of the samples are satisfied. Experimental results show that the experimental errors tend to increase with aspect ratio between thickness of the upper protective layer and width of the heater line due to heat spreading effect.

  • PDF

Measurement and Verification of Thermal Conductivity of Multilayer Thin Dielectric Film via Differential 3$\omega$ Method (차등 3$\omega$ 기법을 이용한 다층 유전체 박막의 열전도도 측정 및 검증)

  • Shin Sang-Woo;Cho Han-Na;Cho Hyung-Hee
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.254-259
    • /
    • 2005
  • In this study, measurement of thermal conductivity of multilayer thin dielectric film has been conducted via differential 3$\omega$ method. Also, verification of differential 3$\omega$ method has been accomplished with various proposed criteria. The target film for measurement is 300 nm silicon dioxide and this thin film is covered with various thicknesses of upper protective layer. The upper protective layer is inserted between the target film and the heater line for purpose of electrical insulator or anti-oxidation barrier since the target film may be a good electrical conductor or a well-oxidizing material. However, the verification of differential 3$\omega$ method has not been conducted. Thus we have shown that the measurement of thermal conductivity of thin films with upper protective layer via differential 3$\omega$ method is verified to be reliable as long as the proposed preconditions are satisfied. Experimental results show that the experimental errors tend to increase with aspect ratio between upper protective layer thickness and width of the heater line due to heat spreading effect.

  • PDF

A Study on the Coverages of Reference Stations of the Differential Global Positioning System Using a Modified Effective Ground Conductivity in the Middle Frequency Band (수정된 유효 대지 도전율을 이용한 위성 항법 보정 시스템(DGPS) 기준국 커버리지에 관한 연구)

  • Bae, Su-Won;Kwon, Se-Woong;Lee, Woo-Sung;Moon, Hyun-Wook;Yoon, Young-Joong;Lee, Yong-An
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.580-586
    • /
    • 2008
  • The prediction of a system coverage is required to install or operate a base station of the differential global positioning system(DGPS). However, the predicted results differ from the measured results when those are analyzed using ITU-R effective ground conductivity values. Thus, in this paper, the coverages of DGPS reference stations are analyzed using the modified effective ground conductivity values. The modified effective ground conductivity is based on the effective ground conductivity of ITU-R and modified to minimize the error between the measured electric fields and the predicted electric fields by using a statistical method. Then, the DGPS system coverages are analyzed by using the modified effective ground conductivity values, and the system stability is verified with a various analysis.

One-dimensional Schottky nanodiode based on telescoping polyprismanes

  • Sergeyev, Daulet
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.339-347
    • /
    • 2021
  • In the framework of the density functional theory combined with the method of non-equilibrium Green functions (DFT + NEGF), the electric transport properties of a one-dimensional nanodevice consisting of telescoping polyprismanes with various types of electrical conductivity were studied. Its transmission spectra, density of state, current-voltage characteristic, and differential conductivity are determined. It was shown that C[14,17], C[14,11], C[14,16], C[14,10] show a metallic nature, and polyprismanes C[14,5], C[14,4] possess semiconductor properties and has a band gap of 0.4 eV and 0.6 eV, respectively. It was found that, when metal C[14,11], C[14,10] and semiconductor C[14,5], C[14,4] polyprismanes are coaxially connected, a Schottky barrier is formed and a weak diode effect is observed, i.e., manifested valve (rectifying) property of telescoping polyprismanes. The enhancement of this effect occurs in the nanodevices C[14,17] - C[14,11] - C[14,5] and C[14,16] - C[14,10] - C[14,4], which have the properties of nanodiode and back nanodiode, respectively. The simulation results can be useful in creating promising active one-dimensional elements of nanoelectronics.

One-dimensional Schottky nanodiode based on telescoping polyprismanes

  • Sergeyev, Daulet
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.471-479
    • /
    • 2021
  • In the framework of the density functional theory combined with the method of non-equilibrium Green functions (DFT + NEGF), the electric transport properties of a one-dimensional nanodevice consisting of telescoping polyprismanes with various types of electrical conductivity were studied. Its transmission spectra, density of state, current-voltage characteristic, and differential conductivity are determined. It was shown that C[14,17], C[14,11], C[14,16], C[14,10] show a metallic nature, and polyprismanes C[14,5], C[14,4] possess semiconductor properties and has a band gap of 0.4 eV and 0.6 eV, respectively. It was found that, when metal C[14,11], C[14,10] and semiconductor C[14,5], C[14,4] polyprismanes are coaxially connected, a Schottky barrier is formed and a weak diode effect is observed, i.e., manifested valve (rectifying) property of telescoping polyprismanes. The enhancement of this effect occurs in the nanodevices C[14,17] - C[14,11] - C[14,5] and C[14,16] - C[14,10] - C[14,4], which have the properties of nanodiode and back nanodiode, respectively. The simulation results can be useful in creating promising active one-dimensional elements of nanoelectronics.

Investigating thermo-mechanical stresses in functionally graded disks using Navier's method for different loading conditions

  • Sanjay Kumar Singh;Lakshman Sondhi;Rakesh Kumar Sahu;Royal Madan;Sanjay Yadav
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.627-642
    • /
    • 2024
  • In the present work, the deformation and stresses induced in a functionally graded disk have been reported for different loading conditions. The governing differential equation is solved using the classical method namely Navier's method by considering thermal and mechanical boundary conditions at the surface of the disk. To simplify solving the second-order differential equation, a plane stress condition was assumed. Following validation using a one-dimensional steady-state heat condition problem, temperature variations were computed for constant heat generation and varying conductivity. The research aims to investigate both the individual and combined effects of rotation, gravity, and temperature with constant heat generation on a hollow disk operating under complex loading conditions. The results demonstrated a high degree of accuracy when compared with those in existing literature. Material properties, such as Young's modulus, density, conductivity, and thermal expansion coefficient, were modeled using a power law variation along the disk's radius by considering aluminum as a base material. The proposed analytical method is straightforward, providing valuable insights into the behavior of disks under various loading conditions. This method is particularly useful for researchers and industries in selecting appropriate loading conditions and grading parameters for engineering applications, including aerospace components, energy systems, and rotary machinery parts.

Specific Heat and Thermal Conductivity Measurement of CNT/EEA Semiconducting Materials and XLPE Insulator (CNT/EEA 반도전층 재료와 XLPE 절연체의 열적 특성)

  • Yang, Jong-Seok;Lee, Kyoung-Yong;Shin, Dong-Hoon;Park, Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.514-519
    • /
    • 2006
  • To improve the mean-life and the reliability of power cable, we have investigated specific heat (Cp) and thermal conductivity of XLPE insulator and semiconducting materials in 154[kV] underground power transmission cable. Specimens were made of sheet form with the seven of specimens for measurement. Specific heat (Cp) and thermal conductivity were measured by DSC (Differential Scanning Calorimetry) and Nano Flash Diffusivity. Specific-heat measurement temperature ranges of XLPE insulator were from $20[^{\circ}C]\;to\;90[^{\circ}C]$, and the heating rate was $1[^{\circ}C/min]$. And the measurement temperatures of thermal conductivity were $25[^{\circ}C],\;55[^{\circ}C]\;and\;90[^{\circ}C]$. In case of semiconducting materials, the measurement temperature ranges of specific heat were from $20[^{\circ}C]\;to\;60[^{\circ}C]$, and the heating rate was $1[^{\circ}C/min]$. And the measurement temperatures of thermal conductivity were $25[^{\circ}C]\;and\;55[^{\circ}]C$. From these experimental results both specific heat and thermal conductivity were increased by heating rate because volume of materials was expanded according to rise in temperature. We could know that a small amount of CNT has a excellent thermal properties.

Volume Resistivity, Specific Heat and Thermal Conductivity Measurement of Semiconducting Materials for 154[kV] (154[kV]용 반도전층 재료의 최적저항, 비열 및 열전도 측정)

  • Lee, Kvoung-Yong;Yang, Jong-Seok;Choi, Yong-Sung;Park, Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.11
    • /
    • pp.477-482
    • /
    • 2005
  • We have investigated volume resistivity and thermal properties showed by changing the content of carbon black which is the component parts of semiconducting shield in underground power transmission cable. Specimens were made of sheet form with the nine of specimens for measurement. Volume resistivity of specimens was measured by volume resistivity meter after 10 minutes in the preheated oven of both 25$\pm$1[$^{\circ}C$] and 90$\pm$1[$^{\circ}C$]. And specific heat (Cp) and thermal conductivity were measured by Nano Flash Diffusivity and DSC (Differential Scanning Calorimetry). The measurement temperature ranges of specific heat using the BSC was from 20[$^{\circ}C$] to 60[$^{\circ}C$], and the heating rate was 1[$^{\circ}C$/min]. And the measurement temperatures of thermal conductivity using Nano Flash Diffusivity were both 25[$^{\circ}C$] and 55[$^{\circ}C$]. Volume resistivity was high according to an increment of the content of carbon black from these experimental results. And specific heat was decreased, while thermal conductivity was increased by an increment of the content of carbon black. And both specific heat and thermal conductivity were increased by heating rate because volume of materials was expanded according to rise in temperature.

A Study on Thermal Behaviors of Expanded Graphite/Erythritol Composites (팽창흑연/에리스리톨 복합체의 열적거동에 관한 연구)

  • Choi, Bo-Kyung;Choi, Woong-Ki;Kuk, Yun-Su;Kim, Hong-Gun;Seo, Min-Kang
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.463-467
    • /
    • 2014
  • In this paper, the thermal behaviors of expanded graphite(EG)/erythritol composites with different contents of EG were studied. The surface and structure properties of the composites were determined by using scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD), respectively. The thermal properties were investigated by differential scanning calorimetry (DSC) and thermal conductivity (TC). As experimental results, the thermal conductivity of the composites increased with increasing the EG content. However, the latent heat was somewhat decreased in the presence of EG. We could concluded that EG was highly promising materials for improving the heat transfer enhancement and energy storage capacity of phase change materials (PCMs).