Browse > Article
http://dx.doi.org/10.14478/ace.2014.1016

A Study on Thermal Behaviors of Expanded Graphite/Erythritol Composites  

Choi, Bo-Kyung (R&D Division, Korea Institute of Carbon Convergence Technology)
Choi, Woong-Ki (R&D Division, Korea Institute of Carbon Convergence Technology)
Kuk, Yun-Su (R&D Division, Korea Institute of Carbon Convergence Technology)
Kim, Hong-Gun (Department of Carbon Fusion Engineering, Jeonju University)
Seo, Min-Kang (R&D Division, Korea Institute of Carbon Convergence Technology)
Publication Information
Applied Chemistry for Engineering / v.25, no.5, 2014 , pp. 463-467 More about this Journal
Abstract
In this paper, the thermal behaviors of expanded graphite(EG)/erythritol composites with different contents of EG were studied. The surface and structure properties of the composites were determined by using scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD), respectively. The thermal properties were investigated by differential scanning calorimetry (DSC) and thermal conductivity (TC). As experimental results, the thermal conductivity of the composites increased with increasing the EG content. However, the latent heat was somewhat decreased in the presence of EG. We could concluded that EG was highly promising materials for improving the heat transfer enhancement and energy storage capacity of phase change materials (PCMs).
Keywords
phase change materials; expanded graphite; erythrital; latent heat; thermal conductivity;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 T. Nomura, N. Okinaka, and T. Akiyama, Impregnation of porous material with phase change material for thermal energy storage, Master. Chem. Phys., 115, 846-850 (2009).   DOI   ScienceOn
2 F. Frusteri, V. Leonardi, and G. Maggio, Numerical approach to describe the phase change of an inorganic PCM containing carbon fibers, Appl. Therm. Eng., 26, 1883-1892 (2006).   DOI
3 A. Karaipekli, A. Sari, and K. Kaygusuz, Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications, Renew. Energy, 32, 2201-2210 (2007).   DOI   ScienceOn
4 S. Pincemin, R. Olives, X. Py, and M. Christ, Highly conductive composites made of phase change materials and graphite for thermal storage, Sol. Energy Mater. Sol. Cells, 92, 603-613 (2008).   DOI
5 Y. J. Chen, D. D. Nguyen, M. Y. Shen, M. C. Yip, and N. H. Tai, Thermal characterizations of the graphite nanosheets reinforced paraffin phase-change composites, Compos. A, 44, 40-46 (2013).   DOI
6 D. Haillot, T. Bauer, U. Kroner, and R. Tamme, Thermal analysis of phase change materials in the temperature range $120-150^{\circ}C$, Thermochim. Acta, 513, 49-59 (2011).   DOI
7 F. Kang, Y. P. Zhang, H. N. Wang, Y. Nishi, and M. Inagaki, Effect of preparation conditions on the characteristics of exfoliated graphite, Carbon, 40, 1575-1581 (2002).   DOI   ScienceOn
8 S. W. Yim, J. H. Lee, Y. G. Lee, S. G. Lee, and S. R. Kim, Effect of the pressure on the interface and thermal conductivity of polypropylene-SiC composites, J. Adhes. Interface, 10, 30-34 (2009).
9 G. Chen, C. Wu, W. Weng, D. Wu, and W. Yan, Preparation of polystyrene/graphite nanosheet composite, Polymer, 44, 1781-1784 (2003).   DOI   ScienceOn
10 P. M. Gilart, A. Y. Martinez, M. G. Barriuso, and C. M. Martinez, Development of PCM/carbon-based composite materials, Sol. Energy Mater. Sol. Cells, 107, 205-211 (2012).   DOI
11 S. J. Park, K. S. Kim, and S. K. Hong, Preparation and thermal properties of polystyrene nanoparticles containing phase change materials as thermal storage medium, Polymer(Korea), 29, 8-13 (2005).   과학기술학회마을
12 J. H. Hong and S. E. Shim, Trends in development of thermal conductive polymer composites, Appl. Chem. Eng., 21, 115-128 (2010).
13 W. L. Cheng, N. Liu, and W. F. Wu, Studies on thermal properties and thermal control effectiveness of a new shape-stabilized phase change material with high thermal conductivity, Appl. Therm. Eng., 36, 345-352 (2012).   DOI
14 Z. Chen, F. Shan, L. Cao, and G. Fang, Synthesis and thermal properties of shape-stabilized lauric acid/activated carbon composites as phase change materials for thermal energy storage, Sol. Energy Mater. Sol. Cells, 102, 131-136 (2012).   DOI   ScienceOn
15 M. Mehrali, S. T. Latibari, M. Mehrali, H. Metselaar, and M. Silakhori, Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite, Energy Convers. Manage., 67, 275-282 (2013).   DOI
16 F. Frusteri, V. Leonardi, S. Vasta, and G. Restuccia, Thermal conductivity measurement of a PCM based storage system containing carbon fibers, Appl. Therm. Eng., 25, 1623-1633 (2005).   DOI
17 T. P. Teng, C. M. Cheng, and C. P. Cheng, Performance assessment of heat storage by phase change materials containing MWCNTs and graphite, Appl. Therm. Eng., 50, 637-644 (2013).   DOI
18 S. Y. Lee, H. K. Shin, M. R. Park, K. Y. Rlee, and S. J. Park, Thermal characterization of erythritol/expanded graphite composites for high thermal storage capacity, Carbon, 68, 67-72 (2014).   DOI
19 X. Xiao, P. Zhang, and M. Li, Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage, Energy Convers. Manage., 73, 86-94 (2013).   DOI
20 T. Oya, T. Nomura, M. Tsubota, and N. Okinaka, and T. Akiyama, Thermal conductivity enhancement of erythritol as PCM by sung graphite and nickel particles, Appl. Therm. Eng., 61, 825-828 (2013).   DOI
21 L. Xia, P. Zhang, and R. Z. Wang, Preparation and thermal characterization of expanded graphite/paraffin composite phase change material, Carbon, 48, 2538-2548 (2010).   DOI
22 S. J. Park, K. S. Kim, and J. R. Lee, Thermal and mechanical interfacial properties of expanded graphite/epoxy composites, J. Korean Ind. Eng. Chem., 15, 493-498 (2004).   과학기술학회마을
23 J. R. Choi, Y. S. Lee, and S. J. Park, Influence of electroless Ni-plated MWCNTs on thermal conductivity and fracture toughness of MWCNTs/$Al_2O_3$/epoxy composites, Polymer(Korea), 37, 449-454 (2013).   과학기술학회마을   DOI
24 D. H. Choi, J. H. Lee, H. R. Hong, and Y. T. Kang, Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application, Int. J. Refrigeration, 42, 112-120 (2014).   DOI
25 S. J. Park and K. S. Kim, A study on oil adsorption of expanded gaphites, Korean Chem. Eng. Res., 42, 362-367 (2004).   과학기술학회마을
26 C. Wang, L. Feng, W. Li, J. Zheng, W. Tian, and X. Li, Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: The influence of the pore structure of the carbon materials, Sol. Energy Mater. Sol. Cells, 105, 21-26 (2012).   DOI
27 S. M. Kim and L. T. Drzal, High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets, Sol. Energy Mater. Sol. Cells, 93, 136-142 (2009).   DOI   ScienceOn
28 S. J. Park, K. S. Kim, and S. K. Hong, Preparation and characterization of expanded graphites by wet process, Hwahak Konghak, 41, 802-807 (2003).   과학기술학회마을
29 A. Sari and A. Karaipekli, Fatty acid esters-based composite phase change materials for thermal energy storage in building, Appl. Therm. Eng., 37, 208-216 (2012).   DOI
30 T. Oya, T. Nomura, N. Okinaka, and T. Akiyama, Phase change composite based on porous nickel and erythritol, Appl. Therm. Eng., 40, 373-377 (2012).   DOI
31 J. S. Yu, A. Horibe, N. Haruki, and M. J. Kim, Melting & solidification characteristic on mixture of erythritol and mannitol of latent heat storage material, Trans. Korean Soc. Mech. Eng., 11, 807-812 (2012).
32 V. D. Bhatt, K. Gohil, and A. Mishra, Thermal energy storage capacity of some phase changing materials and ionic liquids, Int. J. Chemtech. Res., 2, 1771-1779 (2010).