• Title/Summary/Keyword: differential cascode voltage switch

Search Result 3, Processing Time 0.019 seconds

A Static Latched DCVSL Circuits for Asynchronous Pipeline Scheme (비동기 파이프라인 구조를 위한 정적 래치 DCVSL 회로)

  • 김영우;김수원
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.759-762
    • /
    • 1998
  • In this paper, a SL-DCVSL (static latched differential cascode voltage switch logic) circuit for the asynchronous pipeline is proposed. The proposed SL-DCVSL circuit is a slightly modified version of the DCVSL circuit, and used to improve the storage capability of the precharged functional blocks. The proposed SL-DCVSL has more robust storage characteristics compared to the conventional LDCVSL (latched DCVSL〔2〕). The operation of the proposed circuit is verified by simulating the asynchronous FIFO (First-In First-Out) structure.

  • PDF

Design for Self-Repair Systm by Embeded Self-Detection Circuit (자가검출회로 내장의 자가치유시스템 설계)

  • Seo Jung-Il;Seong Nak-Hun;Oh Taik-Jin;Yang Hyun-Mo;Choi Ho-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.5 s.335
    • /
    • pp.15-22
    • /
    • 2005
  • This paper proposes an efficient structure which is able to perform self-detection and self-repair for faults in a digital system by imitating the structure of living beings. The self-repair system is composed of artificial cells, which have homogeneous structures in the two-dimension, and spare cells. An artificial cell is composed of a logic block based on multiplexers, and a genome block, which controls the logic block. The cell is designed using DCVSL (differential cascode voltage switch logic) structure to self-detect faults. If a fault occurs in an artificial cell, it is self-detected by the DCVSL. Then the artificial cells which belong to the column are disabled and reconfigured using both neighbour cells and spare cells to be repaired. A self-repairable 2-bit up/down counter has been fabricated using Hynix $0.35{\mu}m$ technology with $1.14{\times}0.99mm^2$ core area and verified through the circuit simulation and chip test.

Self-timed Current-mode Logic Family having Low-leakage Current for Low-power SoCs (저 전력 SoC를 위한 저 누설전류 특성을 갖는 Self-Timed Current-Mode Logic Family)

  • Song, Jin-Seok;Kong, Jeong-Taek;Kong, Bai-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.37-43
    • /
    • 2008
  • This paper introduces a high-speed low-power self-timed current-mode logic (STCML) that reduces both dynamic and leakage power dissipation. STCML significantly reduces the leakage portion of the power consumption using a pulse-mode control for shorting the virtual ground node. The proposed logic style also minimizes the dynamic portion of the power consumption due to short-circuit current by employing an enhanced self-timing buffer. Comparison results using a 80-nm CMOS technology show that STCML achieves 26 times reduction on leakage power consumption and 27% reduction on dynamic power consumption as compared to the conventional current-mode logic. They also indicate that up to 59% reduction on leakage power consumption compared to differential cascode voltage switch logic (DCVS).