• Title/Summary/Keyword: differentiable Lipschitz algebras

Search Result 5, Processing Time 0.016 seconds

The Maximal Ideal Space of Extended Differentiable Lipschitz Algebras

  • Abolfathi, Mohammad Ali;Ebadian, Ali
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.117-125
    • /
    • 2020
  • In this paper, we first introduce new classes of Lipschitz algebras of infinitely differentiable functions which are extensions of the standard Lipschitz algebras of infinitely differentiable functions. Then we determine the maximal ideal space of these extended algebras. Finally, we show that if X and K are uniformly regular subsets in the complex plane, then R(X, K) is natural.

APPROXIMATION IN LIPSCHITZ ALGEBRAS OF INFINITELY DIFFERENTIABLE FUNCTIONS

  • Honary, T.G.;Mahyar, H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.629-636
    • /
    • 1999
  • We introduce Lipschitz algebras of differentiable functions of a perfect compact plane set X and extend the definition to Lipschitz algebras of infinitely differentiable functions of X. Then we define the subalgebras generated by polynomials, rational functions, and analytic functions in some neighbourhood of X, and determine the maximal ideal spaces of some of these algebras. We investigate the polynomial and rational approximation problems on certain compact sets X.

  • PDF

PRIME IDEALS IN LIPSCHITZ ALGEBRAS OF FINITE DIFFERENTIABLE FUNCTIONS

  • EBADIAN, ALI
    • Honam Mathematical Journal
    • /
    • v.22 no.1
    • /
    • pp.21-30
    • /
    • 2000
  • Lipschitz Algebras Lip(X, ${\alpha}$) and lip(X, ${\alpha}$) were first studied by D. R. Sherbert in 1964. B. Pavlovic in 1995 shown that in these algebras, the prime ideals containing a given prime ideal form a chain. In this paper, we show that the above property holds in $Lip^n(X,\;{\alpha})$ and $lip^n(X,\;{\alpha})$, the Lipschitz algebras of finite differentiable functions on a perfect compact place set X.

  • PDF

BANACH FUNCTION ALGEBRAS OF n-TIMES CONTINUOUSLY DIFFERENTIABLE FUNCTIONS ON Rd VANISHING AT INFINITY AND THEIR BSE-EXTENSIONS

  • Inoue, Jyunji;Takahasi, Sin-Ei
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1333-1354
    • /
    • 2019
  • In authors' paper in 2007, it was shown that the BSE-extension of $C^1_0(R)$, the algebra of continuously differentiable functions f on the real number space R such that f and df /dx vanish at infinity, is the Lipschitz algebra $Lip_1(R)$. This paper extends this result to the case of $C^n_0(R^d)$ and $C^{n-1,1}_b(R^d)$, where n and d represent arbitrary natural numbers. Here $C^n_0(R^d)$ is the space of all n-times continuously differentiable functions f on $R^d$ whose k-times derivatives are vanishing at infinity for k = 0, ${\cdots}$, n, and $C^{n-1,1}_b(R^d)$ is the space of all (n - 1)-times continuously differentiable functions on $R^d$ whose k-times derivatives are bounded for k = 0, ${\cdots}$, n - 1, and (n - 1)-times derivatives are Lipschitz. As a byproduct of our investigation we obtain an important result that $C^{n-1,1}_b(R^d)$ has a predual.

PROJECTIVE LIMIT OF A SEQUENCE OF BANACH FUNCTION ALGEBRAS AS A FRECHET FUNCTION ALGEBRA

  • Sady. F.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.259-267
    • /
    • 2002
  • Let X be a hemicompact space with ($K_{n}$) as an admissible exhaustion, and for each n $\in$ N, $A_{n}$ a Banach function algebra on $K_{n}$ with respect to $\parallel.\parallel_n$ such that $A_{n+1}\midK_{n}$$\subsetA_n$ and${\parallel}f{\mid}K_n{\parallel}_n{\leq}{\parallel}f{\parallel}_{n+1}$ for all f$\in$$A_{n+1}$, We consider the subalgebra A = { f $\in$ C(X) : $\forall_n\;{\epsilon}\;\mathbb{N}$ of C(X) as a frechet function algebra and give a result related to its spectrum when each $A_{n}$ is natural. We also show that if X is moreover noncompact, then any closed subalgebra of A cannot be topologized as a regular Frechet Q-algebra. As an application, the Lipschitzalgebra of infinitely differentiable functions is considered.d.