• Title/Summary/Keyword: dietary proteins

Search Result 252, Processing Time 0.024 seconds

Characteristic Properties of Enzymatically Hydrolyzed Soy Proteins for the Use in Protein Supplements (단백소재 첨가물로서의 효소분해 대두 단백질의 특성)

  • In, Man-Jin;Kim, Min-Hong;Chae, Hee-Jeong
    • Applied Biological Chemistry
    • /
    • v.40 no.5
    • /
    • pp.404-408
    • /
    • 1997
  • Enzymatically hydrolyzed vegetable protein (eHVP) was produced from soy protein using proteases, and the physicochemical properties were examined. Soy protein hydrolysate of 6% protein and 50% degree of hydrolysis was useful for the base of savory ingredients. The Maillard-reacted and flavoring compound-added hydrolysate had improved flavor. It was for enzymatically hydrolyzed soy sauces and dehydrated seasonings. ISP hydrolysate of low molecular weight $(MW{\sim}250)$ and high protein content (85%) was suitable for special uses such as infant diets, sports nutrition, and medical diets. The eHVP gave no limitation of dosage in the formulation as a flavor enhancer. The byproduct of protein hydrolysis was found to have high content of fiber (21%) and to have potential for the use as dietary fiber or bulking agents.

  • PDF

Effect of Yacon on Platelet Function in Hypercholesterolemic Rabbits

  • Lim, Yong;Son, Dong-Ju;Kim, Yun-Bae;Hwang, Bang-Yeon;Yun, Yeo-Pyo;Hwang, Seock-Yeon
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.472-476
    • /
    • 2011
  • Hypercholesterolemia indirectly increases the risk of arterial and venous thrombosis by enhancing the ability of platelets to aggregate. Yacon (Smallanthus sonchifolius) is composed of fructooligosaccharides, proteins, minerals and phenolic compounds, and has potential benefits for the management of diabetes. This study investigated whether the consumption of yacon in the diet inhibits platelet aggregation under hypercholesterolemic conditions. Male New Zealand white rabbits were fed one of five dietary interventions: a normal control diet, 0.5% cholesterol diet, 0.5% cholesterol diet+a low dose of yacon (0.5 g/kg body weight given orally each day), 0.5% cholesterol diet+a high dose of yacon (2.5 g/kg body weight given orally each day), or a 0.5% cholesterol diet+lovastatin (2 mg/kg body weight given orally each day). After 8 weeks, blood was collected to measure the amount of collagen- and thrombin-induced platelets present. Yacon inhibited the platelet aggregation induced by low doses of agonists (0.5 ${\mu}g/mL$ collagen and 0.02 units/ml thrombin) in a concentration-dependent manner. In addition, yacon concentration-dependently inhibited collagen-induced arachidonic acid liberation. Moreover, n-hexane, chloroform and ethyl acetate fractions showed a marked and selective inhibition of the platelet aggregation induced by collagen, again in a dose-dependent manner. These fractions, especially that of chloroform, significantly suppressed platelet aggregation. The results of this study demonstrate that when yacon is added to a cholesterol-enriched diet, cholesterol-induced platelet aggregation returns to control levels. This may also be beneficial in preventing atherosclerosis and reducing risk factors for coronary artery disease and stroke.

Deficiency or activation of peroxisome proliferator-activated receptor α reduces the tissue concentrations of endogenously synthesized docosahexaenoic acid in C57BL/6J mice

  • Hsiao, Wen-Ting;Su, Hui-Min;Su, Kuan-Pin;Chen, Szu-Han;Wu, Hai-Ping;You, Yi-Ling;Fu, Ru-Huei;Chao, Pei-Min
    • Nutrition Research and Practice
    • /
    • v.13 no.4
    • /
    • pp.286-294
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Docosahexaenoic acid (DHA), an n-3 long chain polyunsaturated fatty acid (LCPUFA), is acquired by dietary intake or the in vivo conversion of ${\alpha}$-linolenic acid. Many enzymes participating in LCPUFA synthesis are regulated by peroxisome proliferator-activated receptor alpha ($PPAR{\alpha}$). Therefore, it was hypothesized that the tissue accretion of endogenously synthesized DHA could be modified by $PPAR{\alpha}$. MATERIALS/METHODS: The tissue DHA concentrations and mRNA levels of genes participating in DHA biosynthesis were compared among $PPAR{\alpha}$ homozygous (KO), heterozygous (HZ), and wild type (WT) mice (Exp I), and between WT mice treated with clofibrate ($PPAR{\alpha}$ agonist) or those not treated (Exp II). In ExpII, the expression levels of the proteins associated with DHA function in the brain cortex and retina were also measured. An n3-PUFA depleted/replenished regimen was applied to mitigate the confounding effects of maternal DHA. RESULTS: $PPAR{\alpha}$ ablation reduced the hepatic Acox, Fads1, and Fads2 mRNA levels, as well as the DHA concentration in the liver, but not in the brain cortex. In contrast, $PPAR{\alpha}$ activation increased hepatic Acox, Fads1, Fads2, and Elovl5 mRNA levels, but reduced the DHA concentrations in the liver, retina, and phospholipid of brain cortex, and decreased mRNA and protein levels of the brain-derived neurotrophic factor in brain cortex. CONCLUSIONS: LCPUFA enzyme expression was altered by $PPAR{\alpha}$. Either $PPAR{\alpha}$ deficiency or activation-decreased tissue DHA concentration is a stimulus for further studies to determine the functional significance.

Anti-Inflammatory Effect of Hexane Fraction from Eisenia bicyclis on Lipopolysaccharides-Treated RAW 264.7 Cells (LPS로 유도된 RAW 264.7 대식세포에 대한 대황(Eisenia bicyclis) 헥산 분획물의 항염증 효과)

  • Kim, Bowoon;Choi, Chang-Geun;Kim, Jae-Il;Kim, Hyeung-Rak
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.2
    • /
    • pp.152-161
    • /
    • 2021
  • Eisenia bicyclis is known to have secondary metabolites exhibiting various biological activities. In a preliminary study, the n-hexane fraction obtained from the ethanolic extract of E. bicyclis showed higher anti-inflammatory activity than the ethyl acetate and butyl alcohol fractions based on the inhibition of lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production in RAW 264.7 cells. Using this fraction (E. bicyclis hexane fraction, EHF), we investigated the molecular mechanisms underlying its anti-inflammatory effect in LPS-stimulated RAW 264.7 cells. Pretreatment of the cells with up to 50 ㎍/mL EHF significantly inhibited NO and prostaglandin E2 production as well as their responsible enzyme proteins and mRNAs, in a dose-dependent manner (P<0.05). Similarly, EHF markedly reduced the production of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α as well as their mRNA levels. Nuclear translocation of nuclear factor-kappa B (NF-κB) was strongly suppressed by EHF treatment. EHF significantly reduced the phosphorylation of mitogen-activated protein kinases and phosphatidylinositol 3-kinase/Akt in LPS-stimulated cells. Moreover, EHF reduced ear edema in phorbol myristate acetate (PMA)-induced mice. These results indicate that EHF contains potent anti-inflammatory compounds, which may be used as a dietary supplement for the prevention of inflammatory diseases.

Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals

  • Patra, Amlan Kumar;Kar, Indrajit
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.211-247
    • /
    • 2021
  • Livestock species experience several stresses, particularly weaning, transportation, overproduction, crowding, temperature, and diseases in their life. Heat stress (HS) is one of the most stressors, which is encountered in livestock production systems throughout the world, especially in the tropical regions and is likely to be intensified due to global rise in environmental temperature. The gut has emerged as one of the major target organs affected by HS. The alpha- and beta-diversity of gut microbiota composition are altered due to heat exposure to animals with greater colonization of pathogenic microbiota groups. HS also induces several changes in the gut including damages of microstructures of the mucosal epithelia, increased oxidative insults, reduced immunity, and increased permeability of the gut to toxins and pathogens. Vulnerability of the intestinal barrier integrity leads to invasion of pathogenic microbes and translocation of antigens to the blood circulations, which ultimately may cause systematic inflammations and immune responses. Moreover, digestion of nutrients in the guts may be impaired due to reduced enzymatic activity in the digesta, reduced surface areas for absorption and injury to the mucosal structure and altered expressions of the nutrient transport proteins and genes. The systematic hormonal changes due to HS along with alterations in immune and inflammatory responses often cause reduced feed intake and production performance in livestock and poultry. The altered microbiome likely orchestrates to the hosts for various relevant biological phenomena occurring in the body, but the exact mechanisms how functional communications occur between the microbiota and HS responses are yet to be elucidated. This review aims to discuss the effects of HS on microbiota composition, mucosal structure, oxidant-antioxidant balance mechanism, immunity, and barrier integrity in the gut, and production performance of farm animals along with the dietary ameliorations of HS. Also, this review attempts to explain the mechanisms how these biological responses are affected by HS.

Differential effects of various dietary proteins on dextran sulfate sodium-induced colitis in mice

  • Eunyeong, Ahn;Hyejin, Jeong;Eunjung, Kim
    • Nutrition Research and Practice
    • /
    • v.16 no.6
    • /
    • pp.700-715
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Chronic colitis is a risk factor for colorectal cancer (CRC) development in both animals and humans. Previously, we reported that a diet rich in protein (with casein as the protein source) significantly increased the risk of mouse CRC development in a dose-dependent manner. In this study, we investigated the effects of different protein sources on the risk of colitis development. MATERIALS/METHODS: Balb/c mice were divided into 7 experimental groups: 20% casein (20C), 20C-dextran sulfate sodium (DSS), 40% casein-DSS (40CD), 40% whey protein-DSS (40WD), 40% soy protein-DSS (40SD), 40% white meat-DSS (40WMD), and 40% red meat-DSS (40RMD). Mice were fed an experimental diet for 4 wk and received 3% DSS in their drinking water for 6 days during the 4th wk of the experimental period. RESULTS: Compared to other groups, the 40CD group showed the most aggravated colitis with increased disease activity and inflammatory markers. In the 40RMD group, interleukin (IL)-6 levels were the highest among all the groups. The 40SD group showed conflicting effects, for example, elevated mortality and disease activity but decreased nitric oxide (NO) levels. The 40WD group showed attenuated colitis with increased IL-10 levels and decreased NO levels. The 40WMD group showed conflicting effects, including decreased NO levels and elevated fecal lipocalin-2 and IL-6 levels. CONCLUSIONS: These results suggest that, at levels of 40% in the diet, casein and red meat exacerbate colitis, whereas whey protein mitigates it the most effectively.

Anti-inflammatory and antioxidant activities of Sargassum horneri extract in RAW264.7 macrophages

  • Kim, Min Ju;Jo, Hee Geun;Ramakrishna, Chilakala;Lee, Seung-Jae;Lee, Dong-Sung;Cheong, Sun Hee
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.4
    • /
    • pp.45-53
    • /
    • 2021
  • [Purpose] In this study, we investigated whether a 70% ethanolic (EtOH) extract of Sargassum horneri had antioxidant and anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated macrophage-like RAW 264.7 cells. [Methods] The proximate composition, fatty acids, amino acids, and dietary fiber of S. horneri, various biologically active compounds, and antioxidant activity were analyzed. [Results] The DPPH and ABTS free radical scavenging activities, as well as the reduction power, of the S. horneri extract used here were significantly increased in a concentration-dependent manner. This indicates that S. horneri contains bioactive compounds, such as phenols and flavonoids, that have excellent antioxidant activity. The cellular viability and metabolic activity results confirmed that the extract had no discernible toxicity at concentrations up to 100 ㎍/mL. The levels of nitrites and cytokines (PGE2, TNF-α and IL-6), which mediate pro-inflammatory effect, were significantly inhibited by treatment with either 50 or 100 ㎍/mL S. horneri extract, whereas that of IL-1β was significantly inhibited by treatment with 100 ㎍/mL of the extract. Similarly, the expression of iNOS and COX-2 proteins also decreased according to 50 or 100 ㎍/mL extract concentrations. NF-κB binding to DNA was also significantly inhibited by treatment with 100 ㎍/mL of extract. [Conclusion] These results suggest that 70% EtOH extracts of S. horneri can relieve inflammation caused by disease or high intensity exercise.

Bifidobacterium bifidum DS0908 and Bifidobacterium longum DS0950 Culture-Supernatants Ameliorate Obesity-Related Characteristics in Mice with High-Fat Diet-Induced Obesity

  • M. Shamim Rahman;Youri Lee;Doo-Sang Park;Yong-Sik Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.96-105
    • /
    • 2023
  • Probiotic supplements have promising therapeutic effects on chronic diseases. In this study, we demonstrated the anti-obesity effects of two potential probiotics, Bifidobacterium bifidum DS0908 (DS0908) and Bifidobacterium longum DS0950 (DS0950). Treatment with DS0908 and DS0950 postbiotics significantly induced the expression of the brown adipocyte-specific markers UCP1, PPARγ, PGC1α, PRDM16 and beige adipocyte-specific markers CD137, FGF21, P2RX5, and COX2 in C3H10T1/2 mesenchymal stem cells (MSCs). In mice with high-fat diet (HFD)-induced obesity, both potential probiotics and postbiotics noticeably reduced body weight and epididymal fat accumulation without affecting food intake. DS0908 and DS0950 also improved insulin sensitivity and glucose use in mice with HFD-induced obesity. In addition, DS0908 and DS0950 improved the plasma lipid profile, proved by reduced triglyceride, low-density lipoprotein, and cholesterol levels. Furthermore, DS0908 and DS0950 improved mitochondrial respiratory function, confirmed by the high expression of oxidative phosphorylation proteins, during thermogenesis induction in the visceral and epididymal fat in mice with HFD-induced obesity. Notably, the physiological and metabolic changes were more significant after treatment with potential probiotic culture-supernatants than those with the bacterial pellet. Finally, gene knockdown and co-treatment with inhibitor-mediated mechanistic analyses showed that both DS0908 and DS0950 exerted anti-obesity-related effects via the PKA/p38 MAPK signaling activation in C3H10T1/2 MSCs. Our observations suggest that DS0908 and DS0950 could potentially alleviate obesity as dietary supplements.

Modern Concepts of Restructured Meat Production and Market Opportunities

  • Abdul Samad;AMM Nurul Alam;Swati Kumari;Md. Jakir Hossain;Eun-Yeong Lee;Young-Hwa Hwang;Seon-Tea Joo
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.284-298
    • /
    • 2024
  • Restructured meat (RM) products are gaining importance as an essential component of the meat industry due to consumers' interest in health benefits. RM products imply the binding or holding of meat, meat by-products, and vegetable proteins together to form a meat product with meat's sensory and textural properties. RM products provide consumers with diversified preferences like the intake of low salt, low fat, antioxidants, and high dietary fiber in meat products. From the point of environmental sustainability, RM may aid in combining underutilized products and low-valued meat by adequately utilizing them instead of dumping them as waste material. RM processing technique might also help develop diversified and new hybrid meat products. It is crucial to have more knowledge on the quality issues, selection of binding agents, their optimum proportion, and finally, the ideal processing techniques. It is observed in this study that the most crucial feature of RM could be its healthy products with reduced fat content, which aligns with the preferences of health-conscious consumers who seek low-fat, low-salt, high-fiber options with minimal synthetic additives. This review briefly overviews RM and the factors affecting the quality and shelf life. Moreover, it discusses the recent studies on binding agents in processing RM products. Nonetheless, the recent advancements in processing and market scenarios have been summarized to better understand future research needs. The purpose of this review was to bring light to the ways of sustainable and economical food production.

Low-Molecular Collagen Peptide Supplementation and Body Fat Mass in Adults Aged ≥ 50 Years: A Randomized, Double-Blind, Placebo-Controlled Trial

  • Jeongbin Park;Minji Kim;Hyeri Shin;Hyejin Ahn;Yoo Kyoung Park
    • Clinical Nutrition Research
    • /
    • v.12 no.4
    • /
    • pp.245-256
    • /
    • 2023
  • A randomized, double-blind, placebo-controlled trial was conducted to confirm whether collagen peptide supplementation for 12 week has a beneficial effect on body fat control in older adults at a daily physical activity level. Participants were assigned to either the collagen group (15 g/day of collagen peptide) or the placebo group (placebo drink). Body composition was measured by bioelectrical impedance analysis (BIA) and dual-energy X-ray absorptiometry (DEXA). In total, 74 participants (collagen group, n = 37; placebo group, n = 37) were included in the final analysis. The collagen group showed a significant reduction in total body fat mass compared with the placebo group, as evidenced by both BIA (p = 0.021) and DEXA (p = 0.041) measurements. Body fat mass and percent body fat of the whole body and trunk reduced at 12 weeks compared with baseline only in the collagen group (whole body: body fat mass, p = 0.002; percent body fat, p = 0.002; trunk: body fat mass, p = 0.001; percent body fat, p = 0.000). Total fat mass change (%) (collagen group, -0.49 ± 3.39; placebo group, 2.23 ± 4.20) showed a significant difference between the two groups (p = 0.041). Physical activity, dietary intake, and biochemical parameters showed no significant difference between the groups. The results confirmed that collagen peptide supplementation had a beneficial effect on body fat reduction in older adults aged ≥ 50 years with daily physical activity level. Thus, collagen peptide supplementation has a positive effect on age-related changes.