Browse > Article
http://dx.doi.org/10.4062/biomolther.2011.19.4.472

Effect of Yacon on Platelet Function in Hypercholesterolemic Rabbits  

Lim, Yong (Department of Clinical Laboratory Science, Dong-eui Univerisity)
Son, Dong-Ju (College of Pharmacy, Chungbuk National University)
Kim, Yun-Bae (Research Institute of Veterinary Medicine, Chungbuk National University)
Hwang, Bang-Yeon (College of Pharmacy, Chungbuk National University)
Yun, Yeo-Pyo (College of Pharmacy, Chungbuk National University)
Hwang, Seock-Yeon (Department of Biomedical Laboratory Science, Daejeon University)
Publication Information
Biomolecules & Therapeutics / v.19, no.4, 2011 , pp. 472-476 More about this Journal
Abstract
Hypercholesterolemia indirectly increases the risk of arterial and venous thrombosis by enhancing the ability of platelets to aggregate. Yacon (Smallanthus sonchifolius) is composed of fructooligosaccharides, proteins, minerals and phenolic compounds, and has potential benefits for the management of diabetes. This study investigated whether the consumption of yacon in the diet inhibits platelet aggregation under hypercholesterolemic conditions. Male New Zealand white rabbits were fed one of five dietary interventions: a normal control diet, 0.5% cholesterol diet, 0.5% cholesterol diet+a low dose of yacon (0.5 g/kg body weight given orally each day), 0.5% cholesterol diet+a high dose of yacon (2.5 g/kg body weight given orally each day), or a 0.5% cholesterol diet+lovastatin (2 mg/kg body weight given orally each day). After 8 weeks, blood was collected to measure the amount of collagen- and thrombin-induced platelets present. Yacon inhibited the platelet aggregation induced by low doses of agonists (0.5 ${\mu}g/mL$ collagen and 0.02 units/ml thrombin) in a concentration-dependent manner. In addition, yacon concentration-dependently inhibited collagen-induced arachidonic acid liberation. Moreover, n-hexane, chloroform and ethyl acetate fractions showed a marked and selective inhibition of the platelet aggregation induced by collagen, again in a dose-dependent manner. These fractions, especially that of chloroform, significantly suppressed platelet aggregation. The results of this study demonstrate that when yacon is added to a cholesterol-enriched diet, cholesterol-induced platelet aggregation returns to control levels. This may also be beneficial in preventing atherosclerosis and reducing risk factors for coronary artery disease and stroke.
Keywords
Antiplatelet; Yacon; Hypercholesterolemia; Thrombosis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Park, J. S., Yang, J. S., Hwang, B. Y., Yoo, B. K. and Han, K. (2009) Hypoglycemic effect of yacon tuber extract and its constituent, chlorogenic acid, in streptozotocin-induced diabetic rats. Biomol. Ther. 17, 256-262.   DOI
2 Patrono, C., Falco, A. and Davi, G. (2005) Isoprostane formation and inhibition in atherothrombosis. Curr. Opin. Pharmacol. 5, 198-203.   DOI
3 Quinton, T. M., Kim, S., Jin, J. and Kunapuli, S. P. (2005) Lipid rafts are required in Galpha(i) signaling downstream of the P2Y12 receptor during ADP-mediated platelet activation. J. Thromb. Haemost. 3, 1036-1041.   DOI
4 Sanchez-Quesada, J. L., Benitez, S. and Ordonez-Llanos, J. (2004) Electronegative low-density lipoprotein. Curr. Opin. Lipidol. 15, 329-335.   DOI
5 Sevanian, A., Bittolo-Bon, G., Cazzolato, G., Hodis, H., Hwang, J., Zamburlini, A., Maiorino, M. and Ursini, F. (1997) LDL- is a lipid hydroperoxide-enriched circulating lipoprotein. J. Lipid. Res. 38, 419-428.
6 Sevanian, A., Hwang, J., Hodis, H., Cazzolato, G., Avogaro, P. and Bittolo-Bon, G. (1996) Contribution of an in vivo oxidized LDL to LDL oxidation and its association with dense LDL subpopulations. Arterioscler. Thromb. Vasc. Biol. 16, 784-793.   DOI
7 Shattil, S. J., Anaya-Galindo, R., Bennett, J., Colman, R. W. and Cooper, R. A. (1975) Platelet hypersensitivity induced by cholesterol incorporation. J. Clin. Invest. 55, 636-643.   DOI
8 Tanaga, K., Bujo, H., Inoue, M., Mikami, K., Kotani, K., Takahashi, K., Kanno, T. and Saito, Y. (2002) Increased circulating malondialdehyde- modifi ed LDL levels in patients with coronary artery diseases and their association with peak sizes of LDL particles. Arterioscler. Thromb. Vasc. Biol. 22, 662-666.   DOI
9 van Lier, M., Verhoef, S., Cauwenberghs, S., Heemskerk, J. W., Akkerman, J. W. and Heijnen, H. F. (2008) Role of membrane cholesterol in platelet calcium signalling in response to VWF and collagen under stasis and flow. Thromb. Haemost. 99, 1068-1078.
10 Grgurevich, S., Krishnan, R., White, M. M. and Jennings, L. K. (2003) Role of in vitro cholesterol depletion in mediating human platelet aggregation. J. Thromb. Haemost. 1, 576-586.   DOI
11 Hashizume, T., Nakao, M., Kageura, T. and Sato, T. (1997) Sphingosine enhances arachidonic acid liberation in response to U46619 through an increase in phospholipase A2 activity in rabbit platelets. J. Biochem. 122, 1034-1039.   DOI   ScienceOn
12 Holvoet, P., Vanhaecke, J., Janssens, S., Van de Werf, F. and Collen, D. (1998) Oxidized LDL and malondialdehyde-modifi ed LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation 98, 1487-1494.   DOI   ScienceOn
13 Hwang, S. Y., Son, D. J., Kim, I. W., Kim, D. M., Sohn, S. H., Lee, J. J. and Kim, S. K. (2008) Korean red ginseng attenuates hypercholesterolemia- enhanced platelet aggregation through suppression of diacylglycerol liberation in high-cholesterol-diet-fed rabbits. Phytother. Res. 22, 778-783.   DOI
14 Kovanen, P. T. and Pentikainen, M. O. (2003) Circulating lipoproteins as proinfl ammatory and anti-infl ammatory particles in atherogenesis. Curr. Opin. Lipidol. 14, 411-419.   DOI
15 Bocan, T. M., Schifani, T. A. and Guyton, J. R. (1986) Ultrastructure of the human aortic fibrolipid lesion. Formation of the atherosclerotic lipid-rich core. Am. J. Pathol. 123, 413-424.
16 Kramer, R. M., Jakubowski, J. A., Vaillancourt, R. and Deykin, D. (1982) Effect of membrane cholesterol on phospholipid metabolism in thrombin-stimulated platelets. Enhanced activation of platelet phospholipase(s) for liberation of arachidonic acid. J. Biol. Chem. 257, 6844-6849.
17 Nosal, R. and Jancinova, V. (2001) Pharmacological intervention with platelet phospholipase A2. Bratisl. Lek. Listy 102, 447-453.
18 Notarbartolo, A., Davi, G., Averna, M., Barbagallo, C. M., Ganci, A., Giammarresi, C., La Placa, F. P. and Patrono, C. (1995) Inhibition of thromboxane biosynthesis and platelet function by simvastatin in type IIa hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 15, 247-251.   DOI
19 Fernandez-Ortiz, A., Badimon, J. J., Falk, E., Fuster, V., Meyer, B., Mailhac, A., Weng, D., Shah, P. K. and Badimon, L. (1994) Characterization of the relative thrombogenicity of atherosclerotic plaque components: implications for consequences of plaque rupture. J. Am. Coll. Cardiol. 23, 1562-1569.   DOI
20 Bodin, S., Giuriato, S., Ragab, J., Humbel, B. M., Viala, C., Vieu, C., Chap, H. and Payrastre, B. (2001) Production of phosphatidylinositol 3,4,5-trisphosphate and phosphatidic acid in platelet rafts: evidence for a critical role of cholesterol-enriched domains in human platelet activation. Biochemistry 40, 15290-15299.   DOI
21 Fuster, V., Badimon, L., Badimon, J. J. and Chesebro, J. H. (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N. Engl. J. Med. 326, 242-250.   DOI
22 Yan, X., Suzuki, M., Ohnishi-Kameyama, M., Sada, Y., Nakanishi, T. and Nagata, T. (1999) Extraction and identifi cation of antioxidants in the roots of yacon (Smallanthus sonchifolius). J. Agric. Food. Chem. 47, 4711-4713.   DOI
23 Watala, C. (2005) Blood platelet reactivity and its pharmacological modulation in (people with) diabetes mellitus. Curr. Pharm. Des. 11, 2331-2365.   DOI
24 Willoughby, S., Holmes, A. and Loscalzo, J. (2002) Platelets and cardiovascular disease. Eur. J. Cardiovasc. Nurs. 1, 273-288.   DOI
25 Yabuta, G., Koizumi, Y., Namiki, K., Hida, M. and Namiki, M. (2001) Structure of green pigment formed by the reaction of caffeic acid esters (or chlorogenic acid) with a primary amino compound. Biosci. Biotechnol. Biochem. 65, 2121-2130.   DOI