• Title/Summary/Keyword: dielectrophoresis

Search Result 75, Processing Time 0.03 seconds

미소채널 내 전기역학 및 유전영동 현상 해석을 위한 수치 프로그램 개발 및 검증 (Development and Validation of Numerical Program for Predicting Electrokinetic and Dielectrophoretic Phenomena in a Microchannel)

  • 권재성;맹주성;송시몬
    • 대한기계학회논문집B
    • /
    • 제31권4호
    • /
    • pp.320-329
    • /
    • 2007
  • Electrokinesis and dielectrophoresis are important transport phenomena produced by external electric field applied to a microchannel containing a conductive fluid. We developed a CFD code to predict electrokinetic and dielectrophoretic flows in a microchannel with a uniform circular post array. Using the code, we calculated particle velocities driven by electrokinesis and dielectrophoresis, and conducted Monte Carlo simulations to visualize the particle motions. The code was validated by comparing the results with those from previous studies in literature. At a low electric field, electrokinesis and diffusion is the dominant transport mechanism. At a moderate electric field, dielectrophoresis is balanced with electrokinesis and diffusion, resulting in flowing filaments of particles in the microchannels. However, dielectrophoresis overwhelms the flow at a high electric field and traps particles locally. These results provide useful insight for optimizing design parameters of a microfluidic chip for biochemical analysis, especially for development of on-chip sample pretreatment techniques using electrokinetic and dielectrophoretic effects.

유전이동을 이용한 콜로이드 입자의 크기에 따른 분리 (The Separation of Colloid Particles of Different Sizes by Dielectrophoresis)

  • 황연
    • 한국재료학회지
    • /
    • 제17권3호
    • /
    • pp.167-172
    • /
    • 2007
  • The separation of the small colloidal particles from the mixture of two different sized particles using AC dielectrophoresis phenomenon was studied. The spherical mono-dispersed polystyrene particles dispersed in pure water were put into a perfusion chamber on a substrate, and AC electric fold was applied to the glass substrate with Au electrodes in 4 mm distance. The AC frequency was fixed at 1 kHz and the intensity of the field was varied from 25 V/cm to 160 V/cm. After applying the AC field, the degree of the chain formation that resulted from the particle movements by dielectrophoresis was observed by optical microscope. The mixture of the $1\;{\mu}m\;and\;5\;{\mu}m$ sized polystyrene particles at 0.5 vol% concentrations for each size was set in the dielectrophoresis conditions of 1 kHz and 100 V/cm. At this condition large $5\;{\mu}m$ sized polystyrene particles formed chains, on the contrary the $1\;{\mu}m$ sized polystyrene particles formed no chains. After water flowing for 20 min, it was found that small particles that were floating in the chamber had been removed by the water flowing.

유전 영동을 통한 산화 그래핀 소자 특성 (Characteristic of Graphene Oxide based Device Assembled by Dielectrophoresis)

  • 오주영;정영모;전성찬
    • 정보저장시스템학회논문집
    • /
    • 제8권2호
    • /
    • pp.56-60
    • /
    • 2012
  • Graphene oxide, which is exfoliated by oxidant from graphite, is the material for solving the problem of mass production and positioning. We made graphene oxide based devices by dielectrophoresis, studied and controlled factors which can affect the characteristic of graphene oxide channel. Graphene oxide channel assembled by dielectrophoresis can be constructed differently by various frequency options. We confirmed the change of gate characteristics and I-V characteristics in the range from 80K to 300K temperature.

단일벽 탄소나노튜브의 표면 전도도 조절 및 유전영동에 대한 영향 (Surface Conductance Modulation of Single-Walled Carbon Nanotubes and Effects on Dielectrophoresis)

  • 홍승현;정세훈;김영진;최재봉;백승현
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.179-186
    • /
    • 2006
  • Dielectrophoresis has received considerable attention for separating nanotubes according to electronic types. Here we examine the effects of surface conductivity of semiconducting single-walled carbon nanotubes (SWNT), induced by ionic surfactants, on the sign of dielectrophoretic force. The crossover frequency of semiconducting SWNT increases rapidly as the conductivity ratio between the particle and medium increases, leading to an incomplete separation of ionic surfactant suspended SWNT at an electric field frequency of 10 MHz. The surface charge of SWNT is neutralized by an equimolar mixture of anionic surfactant sodium dodecyl sulfate (SDS) and cationic surfactant cetyltrimenthylammonium bromide (CTAB), resulting in negative dielectrophoresis of semiconducting species at 10 MHz. A comparative Raman spectroscopy study shows a nearly complete separation of metallic SWNT.

다층 버스 바를 이용한 극한 면적의 진행파 유전영동 미세입자 분류기 (Extremely large-area travelling-wave dielectrophoresis microbead separator using a multilayered bus bar)

  • 최은표;김병규;박정열
    • 센서학회지
    • /
    • 제18권2호
    • /
    • pp.139-146
    • /
    • 2009
  • A Multilayered microelectrode design is presented for large area travelling wave dielectrophoresis (TwDEP) separators. Most of typical TwDEP chip has been arrayed with 1000 electrodes in $20{\times}20\;mm^2$. However, there is a limitation of the device area that is critical in throughput, because when the area of TwDEP becomes larger, the resistance of microelectrodes for bus bar is also increased. In this paper, we successfully developed a novel TwDEP chip with extremely large area ($31{\times}25\;mm^2$) by a unique multilayered bus bar design. According to the resistance simulation of our microelectrodes, it is possible to realize a TwDEP chip with an infinite longitudinal length. We demonstrated the feasibility of our suggestion with latex microbeads and showed the potential of extremely high throughput separation with TwDEP technique.

Dielectrophoresis 방법으로 제작한 Si 나노선과 ZnO 나노입자 필름 기반 p-n 이종접합 다이오드 (A p-n Heterojunction Diode Constructed with A p-Si Nanowire and An n-ZnO Nanoparticle Thin-Film by Dielectrophoresis)

  • 김광은;이명원;윤정권;김상식
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.105-108
    • /
    • 2011
  • Newly-developed fabrication of a p-n heterojunction diode constructed with a p-Si nanowire (NW) and an n-ZnO nanoparticle (NP) thin-film by the dielectrophoresis (DEP) technique is demonstrated in this study. With the bias of 20 Vp-p at the input frequency of 1 MHz, the most efficient assembly of the n-ZnO NPs is shown for the fabrication of the p-n heterojunction diode with a p-Si NW. The p-n heterojunction diode fabricated in this study represents current rectifying characteristics with the turn on voltage of 1.1 V. The diode can be applied to the fabrication of optoelectrical devices such as photodetectors, light-emitting diodes (LEDs), or solar cells based on the high conductivity of the NW and the high surface to volume ratio of the NP thin film.

수계 콜로이드 계에서 교류 전계에 의한 입자 배열 제어 (Control of Particle Alignment in an Aqueous Colloidal System by an AC Electric Field)

  • 황연
    • 한국재료학회지
    • /
    • 제23권1호
    • /
    • pp.13-17
    • /
    • 2013
  • The alignments of polystyrene particles of $1{\mu}m$ and $5{\mu}m$ sizes in an aqueous colloidal system were observed by varying the electric field strength, the frequency and the water flow. Spherical mono-dispersed polystyrene particles dispersed in pure water were put into a perfusion chamber; an AC electric field was applied to the Au/Cr electrodes with a 4 mm gap on the glass substrate. The mixture of the $1{\mu}m$ and $5{\mu}m$ sized polystyrene particles at 0.5 vol% concentrations for each size was set in the dielectrophoresis conditions of 1 kHz and 150 V/cm. Large particles of $5{\mu}m$ size were aligned to form chains as the result of the dielectrophoresis force interaction. On the contrary, small particles of $1{\mu}m$ size did not form chains because the dielectrophoresis force was not sufficiently large. When the electric field increased to 250 V/cm, small particles were able to form chains. After the chains were formed from both large and small particles, they began to coalescence as time passed. Owing to the electroosmotic flow of water, wave patterns along the perpendicular direction of the applied electric field appeared at the conditions of 200 Hz and 50 V/cm, when the dielectrophoresis force was small. This wave pattern also appeared for small particles at 1 kHz and 150 V/cm conditions due to the flow of solvent when water was forced to circulate.

전극위에 유전 영동법을 이용한 탄소 나노튜브의 조립기술 (Carbon nanotube assembly technique using the dielectrophoresis on electrodes)

  • 한창수;서희원;최대근;이응숙
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1535-1538
    • /
    • 2005
  • We present a mass productive and reproducible assembly technique of a single bundle of single-walled carbon nanotubes (sb-SWNTs) using dielectrophoresis (DEP). Gold electrodes with 10 gaps made via microlithography were used to align the carbon nanotubes (CNTs). The magnitude and type of applied electric field were investigated to verify their effects on CNT assembly. The optimum assembling conditions in which sb-SWNTs could be positioned at a desired site were experimentally identified, and the characteristics of the assembled sb-SWNTs were evaluated from AFM, Raman spectroscopy, and I-V curve. This assembly method has potential for applications such as gas sensors or electronic devices.

  • PDF