DOI QR코드

DOI QR Code

Characteristic of Graphene Oxide based Device Assembled by Dielectrophoresis

유전 영동을 통한 산화 그래핀 소자 특성

  • Received : 2012.09.10
  • Accepted : 2012.09.24
  • Published : 2012.09.25

Abstract

Graphene oxide, which is exfoliated by oxidant from graphite, is the material for solving the problem of mass production and positioning. We made graphene oxide based devices by dielectrophoresis, studied and controlled factors which can affect the characteristic of graphene oxide channel. Graphene oxide channel assembled by dielectrophoresis can be constructed differently by various frequency options. We confirmed the change of gate characteristics and I-V characteristics in the range from 80K to 300K temperature.

Keywords

References

  1. Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, et al, 2009, "Large-scale pattern growth of graphene films for stretchable transparent electrodes", Nature, Vol 457, pp. 706-710 https://doi.org/10.1038/nature07719
  2. Beom Joon Kim, Houk Jang, Seoung-Ki Lee, Byung Hee Hong, Jong-Hyun Ahn, et al, 2010, "High-Performance Flexible Graphene Field Effect Transistor with Ion Gel Gate Dielectrics", Nano letters, Vol 10, pp. 3464-3466 https://doi.org/10.1021/nl101559n
  3. Ting Yu, Zhenhua Ni, Chaoling Du,Yumeng You, Yingying Wang, et al, 2008, "Raman Mapping Investigation of Graphene on Transparent Flexible Substrate: The Strain Effect", J. Phys. Chem. C, Vol. 112, No. 33 pp. 12602-12605 https://doi.org/10.1021/jp806045u
  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, et al, 2005, "Two-dimensional gas of massless Dirac fermions in graphene", Nature, Vol 438, pp. 197-200 https://doi.org/10.1038/nature04233
  5. K. I. Bolotin, K. J. Sikes, Z. Jiang, M, Klima, G. Fudenberg, et al, 2008, "Ultrahigh electron mobility in suspended graphene", Solid State Communication, Vol 146, pp. 351-355 https://doi.org/10.1016/j.ssc.2008.02.024
  6. Jannik C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, et al, 2007, "The structure of suspended graphene sheets", Nature, Vol 446, pp. 60-63 https://doi.org/10.1038/nature05545
  7. Alfonso Reina, Xiaoting Jia, John Ho, Daniel Nezich, Hyungbin Son, et al, 2009, "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition", Nano Lett., Vol 9, No. 1, pp. 30-35 https://doi.org/10.1021/nl801827v
  8. William S. Hummers Jr, Richard E. Offeman, 1958, "Preparation of Graphitic Oxide", J. Am. Chem. Soc., Vol 80 (6), pp. 1339-1339 https://doi.org/10.1021/ja01539a017
  9. Hector A. Becerril, Jie Mao, Zunfeng Liu, Randall M. Stoltenberg, Zhenan Bao, Yongsheng Chen, 2008, "Evaluation of solution processed reduced graphene oxide films as transparent conductors", ACSNANO, Vol 2, No.3 , pp. 463-470
  10. Cristina Gomez-Navarro, R. Thomas Weitz, Alexander M. Bittner, Matteo Scolari, Alf Mews, et al, 2007, "Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets", NANO LETTERS, Vol .72, No.11 , pp. 3499-3503
  11. GOKI EDA, GIOVANNI FANCHINI, MANISH CHHOWALLA, 2008, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material", Nature nanotechnology, Vol. 3, pp. 270-274 https://doi.org/10.1038/nnano.2008.83
  12. Daeha Joung, A Chunder, Lei Zhai, Saiful I Khondaker, 2010, "High yield fabrication of chemically reduced graphene oxide field effect transistor by dielectrophoresis", Nanotechnology, Vol 21, pp. 1-5
  13. Thomas B. Jones, 1995, "Electromechanics of particles", Cambridge University Press, Cambridge
  14. Steffen Archer, Tong-Tong Li, Tudor Evans, Stephen T. Britland, Hywel Morgan, 1999, "Cell Reactions to Dielectrophoretic Manipulation", Biochemical and Biophysical Research Communications, Vol 257, pp. 687-698 https://doi.org/10.1006/bbrc.1999.0445