• Title/Summary/Keyword: dielectric model

Search Result 408, Processing Time 0.024 seconds

Micro-electromechanical Model of a Piezoelectric fiber/Piezopolymer matrix composite Actuator (압전섬유/압전지지 복합재 작동기의 전기-기계적 마이크로모델)

  • Kim, Cheol;Koo, Kun-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.372-377
    • /
    • 2001
  • Piezoelectric Fiber Composites with Interdigitated Electrodes (PFCIDE) were previously introduced as an alternative to monolithic wafers with conventional electrodes for applications of structural actuation. This paper is an investigation into the performance improvement of piezoelectric fiber composite actuators by changing the matrix material. This paper presents a modified micro-electromechanical model of a piezoelectric fiber/piezopolymer matrix composite actuator with interdigitated electrodes (PFPMIDE). Various concepts from different backgrounds including three-dimensional linear elastic and dielectric theories have been incorporated into the present linear piezoelectric model. The rule of mixture and the modified method to calculate the effective properties of fiber composites are extended to apply to the PFPMIDE model. The new model is validated comparing with available experimental data and other analytical results.

  • PDF

Time Dependent Interaction between Electromagnetic Wave and Dielectric Barrier Discharge Plasma Using Fluid Model (유체 모델을 이용한 유전체 장벽 방전 플라즈마와 전자기파 간의 시간 의존적 상호 작용 분석)

  • Kim, Yuna;Oh, Il-Young;Jung, Inkyun;Hong, Yongjun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.8
    • /
    • pp.857-863
    • /
    • 2014
  • In determining interaction between plasma and electromagnetic wave, plasma frequency and collision frequency are two key parameters. They are derived from electron density and temperature, which vary in an extremely wide range, depending on a plasma generator. Because the parameters are usually unknown, traditional researches have utilized simplified electron density model and constant electron temperature approximation. Introduction of plasma fluid model to electromagnetics is suggested to utilize relatively precise time dependent variables for given generator. Dielectric barrier discharge(DBD) generator is selected due to its simple geometry which allows us to use one dimensional analysis. Time dependent property is analyzed when microwave is launched toward parallel plate DBD plasma. Afterwards, attenuation tendency with the change of electron density and temperature is demonstrated.

Experimental and Numerical Analysis of A Novel Ceria Based Abrasive Slurry for Interlayer Dielectric Chemical Mechanical Planarization

  • Zhuanga, Yun;Borucki, Leonard;Philipossian, Ara;Dien, Eric;Ennahali, Mohamed;Michel, George;Laborie, Bernard;Zhuang, Yun;Keswani, Manish;Rosales-Yeomans, Daniel;Lee, Hyo-Sang;Philipossian, Ara
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.53-57
    • /
    • 2007
  • In this study, a novel slurry containing ceria as the abrasive particles was analyzed in terms of its frictional, thermal and kinetic attributes for interlayer dielectric (ILD) CMP application. The novel slurry was used to polish 200-mm blanket ILD wafers on an $IC1000_{TM}$ K-groove pad with in-situ conditioning. Polishing pressures ranged from 1 to 5 PSI and the sliding velocity ranged from 0.5 to 1.5 m/s. Shear force and pad temperature were measured in real time during the polishing process. The frictional analysis indicated that boundary lubrication was the dominant tribological mechanism. The measured average pad leading edge temperature increased from 26.4 to $38.4\;^{\circ}C$ with the increase in polishing power. The ILD removal rate also increased with the polishing power, ranging from 400 to 4000 A/min. The ILD removal rate deviated from Prestonian behavior at the highest $p{\times}V$ polishing condition and exhibited a strong correlation with the measured average pad leading edge temperature. A modified two-step Langmuir-Hinshelwood kinetic model was used to simulate the ILD removal rate. In this model, transient flash heating temperature is assumed to dominate the chemical reaction temperature. The model successfully captured the variable removal rate behavior at the highest $p{\times}V$ polishing condition and indicates that the polishing process was mechanical limited in the low $p{\times}V$ polishing region and became chemically and mechanically balanced with increasing polishing power.

Growth and Optical Properties of SnSe/BaF2 Single-Crystal Epilayers (SnSe/BaF2 단결정 박막의 성장과 광학적 특성)

  • Lee, II Hoon;Doo, Ha Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.209-215
    • /
    • 2002
  • This study investigated the crystal growth, crystalline structure and the basic optical properties of $SnSe/BaF_2$ epilayers. The SnSe epilayer was grown on $BaF_2$(111) insulating substrates using a hot wall epitaxy(HWE) technique. It was found from the analysis of X-ray diffraction patterns that $SnSe/BaF_2$ epilayer was growing to single crystal with orthorhombic structure oriented [111] along the growth direction. Using Rutherford back scattering(RBS), the atomic ratios of the SnSe was found to be stoichiometric, almost 50 : 50. The best values for the full width at half maximum (FWHM) of the DCXRD was 163 arcsec for SnSe epilarer. The epilayer-thickness dependence of the FWHM of the DCXRD shows that the quality of the $SnSe/BaF_2$ is as expected. The dielectric function ${\varepsilon}$(E) of a semiconductor is closely related to its electronic energy band structure and such relation can be drawn from features around the critical points in the optical spectra. The real and imaginary parts(${\varepsilon}_1$ and ${\varepsilon}_2$) of the dielectric function ${\varepsilon}$ of SnSe were measured. These data are analyzed using a theoretical model known as the model dielectric function(MDF). The optical constants related to dielectric function such as the complex refractive index(n*-n+ik), absorption coefficient (${\alpha}$) and normal- incidence reflectivity (R) are also presented for $SnSe/BaF_2$.

  • PDF

Growth and Optical Properties of PbSnSe Epilayers Grown on BaF2(111) (PbSnSe 단결정 박막의 성장과 광학적 특성)

  • Lee, Il-Hoon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.1
    • /
    • pp.35-41
    • /
    • 2004
  • This study investigated the crystal growth, crystalline structure and the basic optical properties of $PbSnSe/BaF_2$ epilayers. The PbSnSe epilayer was grown on $BaF_2$(111) insulating substrates using a hot wall epitaxy (HWE) technique. It was found from the analysis of X-ray diffraction patterns that $PbSnSe/BaF_2$ epilayer was grown single crystal with a rock-salt structure oriented along [111] the growth direction. Using Rutherford back scattering, the atomic ratios of the PbSnSe was found to be proper stoichiometric. The best values for the full width at half maximum (FWHM) of the DCXRD was 162 arcsec for PbSnSe epilayer. The epilayer-thickness dependence of the FWHM of the DCXRD shows that the quality of the $PbSnSe/BaF_2$ is as expected. The dielectric function ${\varepsilon}(E)$ of a semiconductor is closely related to its electronic energy band structure and such relation can be drawn from features around the critical points(CPs) in the optical spectra. The real and imaginary parts(${\varepsilon}1$ and ${\varepsilon}2$) of the dielectric function ${\varepsilon}$ of PbSe were measured, and the observed spectra reveal distinct structures at energies of the E1, E2 and E3 CPs. These data are analyzed using a theoretical model known as the model dielectric function (MDF). The optical constants related to dielectric function such as the complex refractive index ($n^*=n+ik$), absorption coefficient (${\alpha}$) and normal-incidence reflectivity (R) are also presented for $PbSnSe/BaF_2$.

  • PDF

Microwave Dielectric Properties and Far Infrared Spectrum of $(Pb_{1-x}Ca_x)(Fe_{0.5}Ta_{0.5})O_3$ Ceramics ($(Pb_{1-x}Ca_x)(Fe_{0.5}Ta_{0.5})O_3$ 세라믹스의 마이크로파 유전특성 및 Far Infrared Spectrum)

  • 박흥수;윤기현;김응수
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.256-262
    • /
    • 2000
  • The dielectric properties of complex perovskite ($Pb_{1-x}Ca_{x}$)($Fe_{0.5}Ta_{0.5}$)$O_{3}$ with >($0.5{\le}x{\ge}0.65$ were investigated at microwave frequencies. Dilectric constant decreased with increasing Ca content, and was directly proportional to the cube of average ionic ra야 of A-site. For the specimen of x=0.6 sintered at $1250^{\circ}C$ for 3 h in air, dielectric constant (k) of 63, QF of 11000 GHz, and the temperature coefficient of resonant frequency(TCF) of -14ppm/$^{\circ}C$ were obtained. As Ca content increased, TCF of the specimen negatively increased due to the reduction of the tolerance factor(t). Changes in intrinsic loss with varying Ca content was investigated by the infrared reflectivity spectra ranging 50 to 4000 $cm^{-1}$, which were calculated by the Kramers-Kronig analysis and classical oscillator model. The relative tendency of microwave dielectric properties of the ($Pb_{1-x}Ca_{x}$)($Fe_{0.5}Ta_{0.5}$)$O_{3}$ specimens calculated from the reflectivity data were in good agreement with the results by the post resonant method.

  • PDF

A New Modeling Methodology of TFBAR (박막공진기에 대한 새로운 모델링 기법)

  • 김종수;구명권;육종관
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.103-109
    • /
    • 2004
  • In this paper, a new modeling methodology of thin film bulk acoustic resonator(TFBAR) is presented and the formulations of each lumped element in the model are also introduced. The new model is based upon the Mason model that is a reasonable model to explain the physical characteristics of unit TFBAR. After simplifying the modified Mason model with an additional dielectric loss term, the new model similar to Modified Butterworth-Van Dyke(MBVD) model is complete. The proposed model has three optimization variables which is half of the MBVD model. As a result, the curve fittings for the measured data are much faster and more accurate than any other conventional models. Moreover, it is very useful to design the bandpass filters or voltage controlled oscillators due to the design parameters, such as resonant and anti-resonant frequency, which can reflect the intentions of designer in the model.

The Electrical Properties of Mini-model Cable under mechanical stress in Liquid Nitrogen (액체질소 중에서 기계적 응력에 따른 mini-model 케이블의 전기적 특성)

  • 김영석;곽동순;한철수;김해종;성기철;김상현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • It is important to mechanical properties of dielectric paper and cable to optimum electrical insulation design of HTS cable, because the cable has experience of mechanical stress, such as tensile stress, bending stress. Also, it is operated at cryogenic temperature. From the results, it was observed that the tensile strength of PPLP in liquid nitrogen was high more than that of air, but tensile strain decrease sharply. According as tensile strength increases, the breakdown stress of PPLP in liquid nitrogen is decreased. Because PPLP was deteriorated by microcrack and tensile strain. According as bending radius multiple is decrease, the ac and impulse breakdown stress of mini-model cable is sharply decreased.

Development of a PZT Fiber/Piezo-Polymer Composite Actuator with Interdigitated Electrodes

  • Kim, Cheol;Koo, Kun-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.666-675
    • /
    • 2002
  • Piezoelectric Fiber Composites with Interdigitated Electrodes (PFCIDE) were previously introduced as an alternative to monolithic wafers with conventional electrodes for applications of structural actuation. This paper is an investigation into the performance improvement of piezoelectric fiber composite actuators by changing the matrix material. This paper presents a modified micro-electromechanical model and numerical analyses of piezoelectric fiber/piezopolymer matrix composite actuator with interdigitated electrodes (PFPMIDE). Various concepts from different backgrounds including three-dimensional linear elastic and dielectric theories have been incorporated into the present linear piezoelectric model. The rule of mixture and the modified method to calculate effective properties of fiber composites were extended to apply to the PFPMIDE model. The new model was validated when compared with available experimental data and other analytical results. To see the structural responses of a composite plate integrated with the PFPMIDE, three-dimensional finite element formulations were derived. Numerical analyses show that the shape of the graphite/epoxy composite plate with the PFPMIDE may be controlled by judicious choice of voltages, piezoelectric fiber angles, and elastic tailoring of the composite plate.

Study of Kinetics of Bromophenol Blue Fading in Alcohol-Water Binary Mixtures by SESMORTAC Model

  • Samiey, Babak;Alizadeh, Kamal;Mousavi, Mir Fazlolah;Alizadeh, Nader
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.384-392
    • /
    • 2005
  • Solvent effects on the kinetics of bromophenol blue fading have been investigated within a temperature range in binary mixtures of methanol, ethanol, 1-propanol, ethylene glycol and 1,2-propanediol with water of varying solvent compositions up to 40% by weight of organic solvent component. Correlation of logk with reciprocal of the dielectric constant was linear. Finally a mechanism was proposed for the bromophenol blue fading upon SESMORTAC (study of effect of solvent mixture on the one-step reaction rates using the transition state theory and cage effect) model, by means of this model, the fundamental rate constants of the fading reaction in these solvent systems were calculated.