• Title/Summary/Keyword: die thickness

Search Result 455, Processing Time 0.021 seconds

A study on the factors influencing at corner area material thickness changes of rectangular drawing products (각통드로잉 제품의 모서리 재료두께 변화에 영향을 미치는 인자에 대한 해석 연구)

  • Yun, Jae-Woong;Cho, Sang-Hee;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.22-29
    • /
    • 2020
  • The analysis was carried out using the press molding analysis program by applying six parameters such as material type change, material thickness, friction coefficient, rp, rd and blank holder pressure. As a result of CAE analysis of the soft material DC04 and the relatively hard material HX300LAD, the thickness of the punch R part of the soft material was significantly reduced. The flange portion is greatly increased in thickness in the hard material by the compression action. As a result of considering the deformation amount of 0.6mm, 1.0mm, 1.5mm according to the material thickness, the influence of the thickness is considered to be very small. In case of the material thickness of 0.6mm, the rate of change increases due to the deep drawing depth relative to the material thickness. The sizes of the punches R and die R have the greatest influence on the change in thickness of the material in drawing molding, the smaller the punch R, the thinner the edges of the product, The larger the R of the die, the greater the material thickness of the flange portion. As the coefficient of friction and the blank holder pressure increase, the frictional force of the flange portion increases, which increases the radial force in the drawing process and increases the thickness change of the flange portion.

The Effect on the Thickness Variation According to Rolling Condition and Temperature Drop At Top-end in Plate Rolling (후판 압연 시 공정변수 및 선단부의 온도저하가 두께편차에 미치는 영향)

  • Yim, H.S.;Joo, B.D.;Lee, H.K.;Seo, J.H.;Moon, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.1
    • /
    • pp.16-22
    • /
    • 2009
  • The rolling process is an efficient and economical approach for the manufacturing of plate metals. In the rolling process, the temperature variation is very critical for plate thickness accuracy. The main cause of thickness variation in hot plate mills is the non-uniform temperature distribution along the length of the slab. Also the exit plate thickness is mainly affected by the rolling conditions such as mill modulus, plate thickness and plate width. Hence the thickness variation in top-end is also dependent on these factors. Therefore this study has concentrated on determining the correct amounts of thickness variation due to top-end temperature drop and process parameters.

Effect of Fe, Mn Contents of Al-9wt%Si-0.3wt%Mg Alloys on the Thickness of Die Soldering Reaction Layer for SKD61 Die Steel (SKD61 금형강의 소착 반응층 두께에 미치는 Al-9wt%Si-0.3wt%Mg 합금의 Fe, Mn 영향)

  • Kim, Heon-Joo;Cho, Chi-Man;Jeong, Chang-Yeol
    • Journal of Korea Foundry Society
    • /
    • v.29 no.4
    • /
    • pp.169-175
    • /
    • 2009
  • Effect of iron and manganese contents on die soldering reaction has been studied in Al-9wt.%Si-0.3wt.%Mg alloy. Ternary ${\alpha}_{hcp}-Al_8Fe_2Si$ and ${\alpha}_{bcc}-Al_8Fe_2Si$ intermetallic compounds formed by interaction diffusion between Al-Si-Mg system alloy melt and SKD61 die steel surface. Thickness of soldering reaction layer in die steel surface decreased as Fe and Mn contents of the melts increased : When Fe content of Al-9wt.%Si-0.3wt.%Mg melts at constant 0.5wt%Mn content was 0.15wt.%, 0.45wt.% and 0.6wt.%, thickness of soldered layer of each alloy was $64.5{\mu}m,\;57.3{\mu}m$ and $46.9{\mu}m$ respectively. For Mn content of the alloy melts at constant 0.45wt.%Fe content was 0.30wt.%, 0.50wt.% and 0.70wt.%, thickness of soldered layer of each alloy was $66.1{\mu}m,\;57.3{\mu}m$ and $48.3{\mu}m$ respectively.

Evaluation of Flexural Strength of Silicon Die with Thickness by 4 Point Bending Test (4점굽힘시험에 의한 실리콘 다이의 두께에 따른 파단강도 평가)

  • Min, Yoon-Ki;Byeon, Jai-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • In this study, flexural strength and fracture behavior of silicon die from single crystalline silicon wafer were investigated as a function of thickness. Silicon wafers with various thickness of 300, 200, 180, 160, 150, and 100 ${\mu}m$ were prepared by mechanical grinding and polishing of as-saw wafers. Flexural strength of 40 silicon dies (size: 62.5 mm${\times}$4 mm) from each wafer was measured by four point bending test, respectively. For statistical analysis of flexural strength, shape factor(i.e., Weibull modulus) and scale factor were determined from Weibull plot. Flexural strength reflecting both statistical fracture probability and size (thickness) effect of brittle silicon die was obtained as a linear function of die thickness. Fracture appearance was discussed in relation with measured fracture strength.

A study on the design and manufacture of test work drawing die (Test Work 드로잉 금형의 설계 및 제작에 관한 연구)

  • Lee, Chun-Kyu;Choi, Kye-Kwang
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.13-17
    • /
    • 2018
  • It was analyzed and experimented on the change of the material thickness according to the size of the "R" of the punch and die corners using the material of SCP-1 0.25mm As a result, the following conclusions were obtained. Tensile strength analysis and safety analysis of materials are very important process for each process in strip layout, and Through this, the Influx of material and the deformation of the material were found. As a result of safety analysis and tensile thickness analysis, when the corner R of the punch was 0.3 mm and the edge R of the die was 1.0 mm The inflow of the material was not smooth, and the thickness of the corner part became 0.2 mm, causing cracks. when the corner R of the punch was 0.5 mm and the edge R of the die was 1.5 mm The inflow of the material was smooth, The thickness of the corners of the product is 0.21mm and It was considered that cracks do not occur when the thickness of the bottom surface and the body part becomes thin. The results obtained by applying the results obtained from the analysis, In Experimental Condition 1, a crack occurred in the same part of the analysis In Experimental Condition 2, the flow of the material was smooth and the drawing processing could be performed without generating cracks.

Robust Design of Shot Sleeve Wall Thickness for a Horizontal Pressure Die Casting Machine (수평형 고압다이캐스팅용 샷슬리브의 강건설계)

  • Park, Y.K.;Kim, J.G.
    • Journal of Power System Engineering
    • /
    • v.11 no.2
    • /
    • pp.51-57
    • /
    • 2007
  • As a shot sleeve in die casting plays a critical role in delivering molten metal to a die cavity, any disruption to its function in the injection stage results in deterioration of the quality of final castings. To guarantee a smooth operation of a shot sleeve, its structural stability should be maintained. Despite the simple geometry, design of shot sleeve is based on individual engineer's experience and no agreement on the design is present. In this study, we newly propose a systematic methodology to determine a minimum wall thickness of a shot sleeve to prevent yielding or plastic deformation. Analytical calculations incorporating numerical analysis produce a rational design rule for minimum thickness of a shot sleeve subject to metal intensification pressure and geometric die constraint. To validate the proposed design guideline, authors present real data on a collection of actual shot sleeves. Upon checking their conformity to the new design rule, we discovered a strong correlation between the design of wall thickness and premature failures.

  • PDF

Numerical Analysis on the Flow and Heat Transfer Characteristic of Wood-flour-filled Polypropylene Melt in an Extrusion Die (목분 충진 고분자 용융체의 압출다이 내 유동 및 열전달에 관한 수치해석)

  • Ko, Seung-Hwan;Park, Hyung-Gyu;Song, Myung-Ho;Kim, Charn-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.147-154
    • /
    • 2003
  • A three-dimensional numerical analysis of the flow and heat transfer characteristic of wood-flour-filled polypropylene melt in an extrusion die was carried out. Used for this analysis were Finite Concept Method based on FVM, unstructured grid and non-Newtonian fluid viscosity model. Temperature and flow fields are closely coupled through temperature dependent viscosity and viscous dissipation. With large Peclet, Nahme, Brinkman numbers, viscous heating caused high temperature belt near die housing. Changing taper plate thickness and examining some predefined parameters at die exit investigated the effect of taper plate on velocity and temperature uniformities. In the presence of taper plate, uniformity at die exit could be improved and there existed an optimum thickness to maximize it.

An Influence of the Frictional Condition on Material Flow in Forward/Backward Combined Extrusion Process (전/후방 복합 압출공정에서 마찰조건이 재료 유동에 미치는 영향)

  • Kim, M.T.;Noh, J.H.;Hwang, B.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.433-436
    • /
    • 2009
  • This study is concerned with an effect of frictional condition in a forward/backward combined extrusion process. Generally, the material flow of the billet is influenced by the corners of the die cavity, the ratio in reduction in area, and thickness ratio of backward can thickness to forward can thickness. In addition, the frictional condition in contact area between the billet and the punch/die also affect the material flow. This paper investigated the effect of frictional condition for variable friction factors. The FEM simulation has been carried out in order to examine the effect of frictional condition. Deformation patterns and flow characteristics were examined in terms of design parameters such as extruded length ratio etc. Die pressure exerted on the die-workpiece interface is calculated by the simulation results and analyzed for safe tooling. Therefore the numerical simulation works provide a combined extrusion process of stable cold forging process planning to avoid the severe damage on the tool.

  • PDF

Evaluation of Fracture Strength of Silicon Die with Surface Condition by Ball Breaker Test (볼브레이커시험에 의한 실리콘 다이의 표면조건에 따른 파단강도 평가)

  • Byeon, Jai-Won
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.4
    • /
    • pp.178-184
    • /
    • 2013
  • The effects of thickness and surface grinding condition on the fracture strength of Si wafer with a thickness under $100{\mu}m$ were investigated. Fracture strength was measured by ball breaker test for about 330 dies (size: $4mm{\times}4mm$) per each wafer. For statistical analysis of the fracture strength, scale factor was determined from Weibull plot. Ball breaker fracture strength was observed to increase with decreasing thickness of silicon die. For the silicon dies of different surface conditions, ball breaker fracture strength was high in the order of polished, ground (#4800), and ground (#320 grit) specimen. Probabilistic fracture strength (i.e., scale factor) increased with decreasing surface roughness of silicon die.

Effect of Sludge Formation on the Thickness of Die Soldering Reaction Layer in Al-9Si-0.3Mg Casting Alloy (Al-9Si-0.3Mg 주조용 합금에서 Sludge 형성이 금형소착 반응층 두께에 미치는 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.30 no.2
    • /
    • pp.76-82
    • /
    • 2010
  • Effect of reaction time and sludge formation on the thickness of die soldering reaction layer has been studied in Al-9Si-0.3Mg casting alloy. Ternary ${\alpha}_{bcc}-Al_8Fe_2Si$ and ${\alpha}_{hcp}-Al_8Fe_2Si$ intermetallic compounds formed at the interface of SKD61 tool steel by interaction diffusion of Al, Fe and Si atoms after 0.5hr and 6hr immersion time, respectively. Binary ${\eta}-Fe_2Al_5$ additionally formed at the interface of SKD61 tool steel after 10hr immersion time. Thickness of soldering reaction layer in die surface increased as immersion time increased from 0.5hr to 24hr. Sludge formation was ascertained in the samples which were immersed in the melts more than 10hr. Reaction of die soldering after sludge formation was more accelerated than that of before sludge formation due to a decrease in Fe content, followed by higher diffusion rate of Al in the melt by sludge formation.