• Title/Summary/Keyword: dicA

Search Result 221, Processing Time 0.029 seconds

Hydrogeochemistry and Origin of $CO_2$ and Noble Gases in the Dalki Carbonate Waters of the Chungsong Area (청송 달기탄산약수의 수리지화학과 탄산 및 영족기체 기원)

  • Jeong, Chan-Ho;Kim, Kyu-Han;Nagao, Keisuke
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.123-134
    • /
    • 2012
  • Hydrochemical analyses, carbon isotopic (${\delta}^{13}C_{DIC}$) analyses, and noble gas isotopic ($^3He/^4He$ and $^4He/^{20}Ne$) analyses of the Dalki carbonate waters in the Chungsong area were carried out to elucidate their hydrochemical composition and to determine the source of $CO_2$ gas and noble gases. The carbonate waters have a pH of between 5.93 and 6.33, and an electrical conductivity 1950 to $3030{\mu}S/cm$. The chemical composition of all carbonate waters was Ca(Mg)-$HCO_3$, with a high Na content. The contents of Fe, Mn, and As in some carbonate waters exceed the limit stipulated for drinking water. The concentrations of major ions are slightly higher than those reported previously. The ${\delta}^{13}C_{DIC}$ values range from -6.70‰ to -4.47‰, indicating that the carbon originated from a deep-seated source. The $^3He/^4He$ and $^4He/^{20}Ne$ ratios vary from $7.67{\times}10^{-6}$ to $8.38{\times}10^{-6}$ and from 21.32 to 725.7, respectively. On the $^3He/^4He$ versus $^4He/^{20}Ne$ diagram, the noble gas isotope ratios plot in the field of a deep-seated source, such as mantle or magma. We therefore conclude that $CO_2$ gas and noble gas in the Dalki carbonate waters originated from a deep-seated source, rather than an inorganic $CO_2$ origin as suggested in a previous study.

Hydrochemistry and Origin of Noble Gases and $CO_2$ Gas Within Carbonated Mineral Waters in the Kyeoungbuk-Kangwon Province, Korea (경북-강원일대 탄산약수의 수질화학과 탄산 및 영족기체 기원)

  • Jeong, Chan-Ho;Yoo, Sang-Woo;Kim, Kyu-Han;Nagao, Keisuke
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.65-77
    • /
    • 2011
  • Hydrochemical and carbon isotopic (${\delta}^{13}C_{DIC}$) analyses of 11 water samples, and noble gas isotopic analyses of 8 water samples collected in the Kyeoungbuk and Kangwon areas of Korea were performed to determine their hydrochemical characteristics and to interpret the source of noble gases and $CO_2$ gas in the water. The carbonated mineral waters are weakly acidic (PH = 5.59-6.04), and electrical conductivity ranges from 302 to $864\;{\mu}S/cm$. The chemical composition of all the water samples is Ca-$HCO_3$ type. The high contents of Fe and Mn exceed the safe limits for drinking water. The ${\delta}^{13}C_{DIC}$ values of the samples range from -5.30‰ to -2.84‰, indicating that the carbon is supplied mainly from a deep-seated source and to a lesser degree from an inorganic carbonate source. The $^3He/^4He$ ratios of the samples range from $1.51{\times}10^{-6}$ to $6.45{\times}10^{-6}$. The samples plot into three groups on a $^3He/^4He$ versus $^4He/^{20}Ne$ diagram: the deep-seated field (e.g., a mantle source), the atmospheric field, and the air-mantle mixing field. A wide range of $^4He/^{20}Ne$ ratios is observed ($0.036{\times}10^{-6}$ to $1.76{\times}10^{-6}$), indicating that while radiogenic $^4He$ is dominant in these water samples, mantle-origin He is also present. The supply of $CO_2$ gas and noble gases from a deep-seated source to carbonated waters is inferred to be controlled by geological structures such as faults and geological boundaries.

Study on the Split Hopkinson Pressure Bar Apparatus for Measuring High-strain Rate Tensile Properties of Plastic Material (플라스틱 소재의 고 변형률 인장특성 평가를 위한 홉킨스바(Split Hopkinson Pressure Bar) 측정 장비에 관한 연구)

  • Han, In-Soo;Lee, Se-Min;Kim, Kyu-Won;Kim, Hak-Sung
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.196-200
    • /
    • 2022
  • Split Hopkinson Pressure Bar (SHPB) is a general test equipment for measuring the mechanical properties of high modulus metal and composite materials at high strain rate. However, for the soft plastic material, it is difficult to hold the specimen and achieve dynamic stress equilibrium due to the weak transmitted signals. In this study, SHPB test apparatus were designed to measure accurately the high strain rate stress-strain curve of the soft plastic materials by changing the incident bar materials and the shape of the specimen holder parts. In addition, to verify the high strain-rate tensile strain data obtained from SHPB, the strain distribution of the specimen was measured and analyzed with a high-speed camera and the digital image correlation (DIC), which was compared with the strain history measured from SHPB.

Inhibitory Effects of Hwao-tang on the Atherosclerosis and the Venous Thrombosis

  • Hong Mun Yoob;Choi Dall Yoong;Kim Cherl Ho;Kim Beob Jin;Kim Han Geu;Ahan Jong Chan;Lee Soo Kyung;Chung Tae Wook;Park Won Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.380-388
    • /
    • 2002
  • The inhibitory effects of the traditional herbal medicine Hwao-tang on the progression of the atherosclerotic lesions were studied using the spontaneous familial hypercholesterolemia (FH) model, Kurosawa and Kusanagi-hypercholesterolemic (KHC) rabbits. Hwao-tang is activate blood circulation, vital energy and regulate menstruation, etc. Nowadays, Hwao-tang is mainly used for the treatment of inflammation, hyperlipemia and arteriosclerosis. However, pharmacological mechanisms of Hwao-tang on lipid metabolism and atherosclerosis formation are poorly understood. We have investigated the pharmacological effects of Hwao-tang on hypercholesterolemia and atherosclerosis using a spontaneous experimental model. In conclusion, the protection of extracts of HOT and its herbs on the ischemic infarction induced artificially might be related to their inhibitory effects on DIC, platelet coagulation and thrombic action. These suggest that Hwao-tang has inhibitory effects on the development of atheromatous plaque formation in spontaneous FH model rabbits. It is possible that the anti oxidative effects of Hwao-tang on LDL led to the beneficial effects observed in this study.

Analysis of Thermal Deformation of Co-bonded Dissimilar Composite considering Non-linear Thermal Expansion Characteristics of Composite Materials (비선형 열팽창 특성을 고려한 이종 접합 복합재의 열변형 해석)

  • Kim, Jeong-Beom;Kim, Hong-Il;Jeon, Ho-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.10
    • /
    • pp.809-815
    • /
    • 2014
  • The co-bonded dissimilar composite under a wide range of temperature change shows thermal distortion due to the differences in thermal expansion characteristics of the composite materials. Analysis of the thermal expansion characteristics of each composite is required for the design of co-bonded dissimilar composite structure with considering the shape distortion during the manufacturing process. In this work, digital image correlation (DIC) technique is introduced for measuring the thermal distortion characteristics of co-bonded dissimilar composite specimen, carbon/epoxy and silica/phenolic. The thermal distortion of co-bonded dissimilar composite specimen is numerically estimated and compared with the experiments. The estimated results is successfully validated using the measured results.

Thermal Warpage Behavior of Single-Side Polished Silicon Wafers (단면 연마된 실리콘 웨이퍼의 열에 의한 휨 거동)

  • Kim, Junmo;Gu, Chang-Yeon;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.89-93
    • /
    • 2020
  • Complex warpage behavior of the electronic packages causes internal stress so many kinds of mechanical failure occur such as delamination or crack. Efforts to predict the warpage behavior accurately in order to prevent the decrease in yield have been approached from various aspects. For warpage prediction, silicon is generally treated as a homogeneous material, therefore it is described as showing no warpage behavior due to thermal loading. However, it was reported that warpage is actually caused by residual stress accumulated during grinding and polishing in order to make silicon wafer thinner, which make silicon wafer inhomogeneous through thickness direction. In this paper, warpage behavior of the single-side polished wafer at solder reflow temperature, the highest temperature in packaging processes, was measured using 3D digital image correlation (DIC) method. Mechanism was verified by measuring coefficient of thermal expansion (CTE) of both mirror-polished surface and rough surface.

Evaluation of Accuracy and Optimization of Digital Image Analysis Technique for Measuring Deformation of Soils (흙의 변형 측정을 위한 디지털 이미지 해석 기법의 최적화 및 정확도 평가)

  • Kim, Jun-Young;Jang, Eui-Ryong;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.7
    • /
    • pp.5-16
    • /
    • 2011
  • Digital image analysis techniques have been developed and utilized in the field of solid mechanics and fluid mechanics to measure the deformation and velocity of a target object. The deformation measurement systems based on Particle Image Velocimetry (PIV) and Digital Image Correlation (DIC) have been attempted in geotechnical testings (e.g., physical model tests) for observing the deformation of soils. The digital image analysis is influenced by image pattern of test materials, resolution of the used digital camera, target area, image analysis techniques, and analysis conditions. Therefore, optimal analysis conditions should be determined to obtain high quality results on soil deformations. In the present study, various influence factors on the digital image analysis were described and summarized. The optimizing procedure for high accurate results was then proposed. Finally, the applicability of the developed procedure was examined.

Monitoring the failure mechanisms of a reinforced concrete beam strengthened by textile reinforced cement using acoustic emission and digital image correlation

  • Aggelis, Dimitrios G.;Verbruggen, Svetlana;Tsangouri, Eleni;Tysmans, Tine;Van Hemelrijck, Danny
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.91-105
    • /
    • 2016
  • One of the most commonly used techniques to strengthen steel reinforced concrete structures is the application of externally bonded patches in the form of carbon fiber reinforced polymers (CFRP) or recently, textile reinforced cements (TRC). These external patches undertake the tensile stress of bending constraining concrete cracking. Development of full-field inspection methodologies for fracture monitoring are important since the reinforcing layers are not transparent, hindering visual observation of the material condition underneath. In the present study acoustic emission (AE) and digital image correlation (DIC) are applied during four-point bending tests of large beams to follow the damage accumulation. AE helps to determine the onset of fracture as well as the different damage mechanisms through the registered shifts in AE rate, location of active sources and change in waveform parameters. The effect of wave propagation distance, which in large components and in-situ can well mask the original information as emitted by the fracture incidents is also discussed. Simultaneously, crucial information is supplied by DIC concerning the moments of stress release of the patches due to debonding, benchmarking the trends monitored by AE. From the point of view of mechanics, conclusions on the reinforcing contribution of the different repair methodologies are also drawn.

Study of the Compressive Behavior of Polypropylene-low Glass Fiber Compound and Thermoplastic Olefin under High Strain Rate (고 변형률 속도에서 폴리프로필렌 및 열가소성 올레핀 소재의 압축 거동에 대한 연구)

  • Lee, Se-Min;Kim, Dug-Joong;Han, In-Soo;Kim, Hak-Sung
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.38-41
    • /
    • 2022
  • In this study, the strain rate dependent tensile and compressive properties of PP-LGF and TPO was investigated under the high strain rate by using the Split Hopkinson Pressure Bar (SHPB). The SHPB is the most widely used apparatus to characterize dynamic mechanical behavior of materials at high strain rates between 100 s-1 and 10,000 s-1. The SHPB test is based on the wave propagation theory which was developed to give the stress, strain and strain rate in the specimen using the strains measured in the incident and transmission bars. In addition, to verify the strain data obtained from SHPB, the specimen was photographed with a high-speed camera and compared with the strain data obtained through the Digital Image Correlation (DIC).

Study of monolithic 3D integrated-circuit consisting of tunneling field-effect transistors (터널링 전계효과 트랜지스터로 구성된 3차원 적층형 집적회로에 대한 연구)

  • Yu, Yun Seop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.682-687
    • /
    • 2022
  • In this paper, the research results on monolithic three-dimensional integrated-circuit (M3DICs) stacked with tunneling field effect transistors (TFETs) are introduced. Unlike metal-oxide-semiconductor field-effect transistors (MOSFETs), TFETs are designed differently from the layout of symmetrical MOSFETs because the source and drain of TFET are asymmetrical. Various monolithic 3D inverter (M3D-INV) structures and layouts are possible due to the asymmetric structure, and among them, a simple inverter structure with the minimum metal layer is proposed. Using the proposed M3D-INV, this M3D logic gates such as NAND and NOR gates by sequentially stacking TFETs are proposed, respectively. The simulation results of voltage transfer characteristics of the proposed M3D logic gates are investigated using mixed-mode simulator of technology computer aided design (TCAD), and the operation of each logic circuit is verified. The cell area for each M3D logic gate is reduced by about 50% compared to one for the two-dimensional planar logic gates.