DOI QR코드

DOI QR Code

Analysis of Thermal Deformation of Co-bonded Dissimilar Composite considering Non-linear Thermal Expansion Characteristics of Composite Materials

비선형 열팽창 특성을 고려한 이종 접합 복합재의 열변형 해석

  • Received : 2014.07.14
  • Accepted : 2014.08.22
  • Published : 2014.10.01

Abstract

The co-bonded dissimilar composite under a wide range of temperature change shows thermal distortion due to the differences in thermal expansion characteristics of the composite materials. Analysis of the thermal expansion characteristics of each composite is required for the design of co-bonded dissimilar composite structure with considering the shape distortion during the manufacturing process. In this work, digital image correlation (DIC) technique is introduced for measuring the thermal distortion characteristics of co-bonded dissimilar composite specimen, carbon/epoxy and silica/phenolic. The thermal distortion of co-bonded dissimilar composite specimen is numerically estimated and compared with the experiments. The estimated results is successfully validated using the measured results.

큰 온도 변화를 받는 이종 접합 복합재는 재료의 서로 다른 열팽창 특성으로 인해 열에 의한 형상 왜곡이 발생되기 쉽다. 성형 과정에서 이종 접합 복합재 구조물의 제작 공정 중의 형상 왜곡 현상을 고려하기 위해서 구성하는 각각의 복합재료들에 대한 열팽창 특성 분석이 우선적으로 요구된다. 본 논문에서는 Carbon/Epoxy와 Silica/Phenolic의 이종접합 복합재료 시편의 열변형 특성을 측정하기 위해 디지털 영상 상관 기법(DIC)을 활용하였다. 이종 접합 복합재 시편의 열변형에 대해 수치 해석을 수행하였고 이를 실험 결과와 비교하였다. 수치해석을 통한 예측 결과는 실험을 통하여 입증되었다.

Keywords

References

  1. Kawato, H., Watanabe, S., Yamamoto, Y., Fujii, K., "Aerodynamic Performances of Lifting-Body Configurations for a Reentry Vehicle", J. Spacecraft Rocket. 42(2), 2005, pp. 232-239 https://doi.org/10.2514/1.2418
  2. Kotanchik, J. N., BRYAN R., "Structures and Materials for Manned Reentry Vehicles", AIAA Paper. No. 66-987, 1966
  3. Koo, J. H., Ho D. W. H., Ezekoye, O. A., "A Review of Numerical and Experimental Characterization of Thermal Protection Materials . Part I. Numerical Modeling", AIAA Paper. No. 2006-4936, 2006
  4. Brennan, J., Prewo, K. M., "Silicon carbide fibre reinforced glass-ceramic matrix composites exhibiting high strength and toughness", J. Mater. Sci., 17(8), 1982, pp. 2731-2383
  5. Havis, C. R., Peterson, G. P., Fletcher, L. S., "Predicting the thermal conductivity and temperature distribution in aligned fiber composites", Int. J. Thermophys, 3(4), 1989, pp. 416-422 https://doi.org/10.2514/3.28767
  6. Zimcik, D. G., Koike, B. M., "Thermal distortion Behavior of Graphite reinforce Aluminum Space Structures", J. Spacecraft Rocket. 27(4), 1990, pp. 380-385 https://doi.org/10.2514/3.26154
  7. Wijskamp, S., "Shape Distortions in Composite Forming," PhD Dissertation, Univ. of Twente, 2005
  8. Svanberg, J. M., "Predictions of Manufacturing Induced Shape Distortions", PhD Dissertation, Lulea University of Technology, 2002
  9. Wolff, E. G., "Introduction to the Dimensional Stability of Composite Materials", DEStech Publication, 2004
  10. Kim H.I., Han J. H., Yang H. S., Cho Ch. R., Cho H. J., Kim H. B., "Design of High-precision CTE measurement System for the Structural Materials in Space Applications", J. KSAS, 36(9), 2008, pp. 916-922 https://doi.org/10.5139/JKSAS.2008.36.9.916
  11. Kim, H.-I., Yoon, J.-S., Kim, H.-B., "Measurement of the thermal expansion of space structures using fiber Bragg grating sensors and displacement measuring interferometers", Meas. Sci. Technol, 21(8), 085704, 2010 https://doi.org/10.1088/0957-0233/21/8/085704
  12. Kim K. S., "Principle of Digital Image Correlation", J. KSNT, 32(5), 2012, pp. 597-602
  13. Jin, T. L., Goo, N. S.,, "Thermal Stress Measurement of a Double Ring Structure Using Digital Image Correlation Method", Experimental Techiniques, online published, 2013
  14. De Strycker, M., Schueremans, L., Van Paepegem, W., Debruyne, D., "Measuring the thermal expansion coefficient of tubular steel specimens with digital image correlation techniques", Opt. Laser Eng., 48(2010), 2010, pp. 978-986 https://doi.org/10.1016/j.optlaseng.2010.05.008
  15. Montanini, R., Freni, F., "Non-contact measurement of linear thermal expansion coefficients of solid materials by infrared image correlation", Meas. Sci. Technol., 25(1), 015013, 2014 https://doi.org/10.1088/0957-0233/25/1/015013
  16. Pan B., Wu D., Xia Y.,"High-temperature deformation field measurement by combining transient aerodynamic heating simulation system and reliability-guided digital image correlation", Opt. Laser Eng., 48(2010), 2010, pp. 841-848 https://doi.org/10.1016/j.optlaseng.2010.04.007
  17. ASTM E228-11, Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push-Rod Dilatometer, 2011