• Title/Summary/Keyword: diabetes mice

Search Result 434, Processing Time 0.031 seconds

Effect of Bambusae caulis in Liquamen on Streptozocin-Induced Diabetic C57BL/6 Mice

  • Deung Young-Kun;Park Seung-Kyu;Jin Dan;Yang Eun-Ju;Lim Soo-Jung;Kwon Ki-Rok;Kim Dong-Heui;Lee Kyu-Jae
    • Biomedical Science Letters
    • /
    • v.11 no.3
    • /
    • pp.343-347
    • /
    • 2005
  • Bambusae caulis in Liquamen is one of the important herbal medicine produced by heating bamboo indirectly and is used for treatment of stroke, hypertension, and diabetes etc. Recently the mechanism of clinical effects on Bambusae caulis in Liquamen has been studied. This experiment was conducted to confirm the clinical effects of Bambusae caulis in Liquamen on type 1 diabetes and its related mechanism. We divided C57BL/6 mice into 3 groups and induced them to be type 1 diabetes by injection of streptozocin into peritoneum. The dosage of each group was 150 mg/kg once only, 140 mg/kg once only and 40 mg/kg for 5 days respectively. The two groups injected streptozocin for once took orally Bambusae caulis in Liquamen after the induction of diabetes, and the other one group was given Bambusae caulis in Liquamen during the diabetes inducing period. As the result, the two diabetes-induced groups showed blood glucose decreasing effect by Bambusae caulis in Liquamen on an average, but they didn't show the signiftcant differences statistically. But Bambusae caulis in Liquamen showed the anti-diabetic effect suppressing blood sugar rising trend during the diabetes inducing peried (P<0.05). The anti-oxidative effect of Bambusae caulis in Liquamen was measured with the hypoxanthine/xanthine oxidase (HX/XOD) system. The quantity of ROS was measured using DCFDA reagent indirectly. As the result, $10\%$ solution of Bambusae caulis in Liquamen showed anti-oxidative effect by scavenging $93.4\%$ superoxide as compared with control group. It is suspected that the anti-oxidative effect of Bambusae caulis in Liquamen suppressed the increase of blood glucose in the diabetes-inducing group. These results could be useful data to understand the effect of Bambusae caulis in Liquamen on type 1 diabetes and type 1 diabetes developing because ROS were closely connected with the induction and complications of diabetes.

  • PDF

Altered Gene Expression of Inflammatory Cytokines in Adipose Tissue of Streptozotocin-induced Diabetic C57BL/6 Mice (Streptozotocin으로 당뇨가 유도된 C57BL/6 생쥐 지방조직에서의 염증성 사이토카인 유전자의 이상발현)

  • Lee, Yong-Ho;Kim, Jong Bong
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.825-831
    • /
    • 2013
  • The aim of this study was to investigate the effects of induced diabetes by streptozotocin (STZ) administration on gene expression of proinflammatory cytokines in adipose tissue of C57/BL6 mice fed either a normal diet (ND) or a high-fat diet (HFD). Four diabetic mice groups (16- or 26-week-old mice fed either ND or HFD) and four control groups of age and diet matched non-diabetic mice were used. By real-time PCR, gene expression levels of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and monocyte chemoattractant protein-1 (MCP-1) were examined in adipose tissue. The results demonstrated that gene expression of TNF-${\alpha}$ was significantly or marginally increased in STZ induced diabetic mice groups compared with non-diabetic groups. On the other hand, MCP-1 gene expression tended to be decreased in diabetic mice compared with non-diabetic controls. Especially, MCP-1 expression level in 16w diabetic mice on HFD was about 26% of that in age and diet matched non-diabetic controls (p<0.001). In addition, MCP-1 gene expression in adipose tissue was correlated with plasma insulin levels (p=0.0002). These results suggest that gene expression of proinflammatory cytokines in adipose tissue is differentially regulated in mouse models of diabetes. The basic data in this study will be useful for elucidating basic mechanisms of inflammatory state and increased expression of proinflammatory cytokines in adipose tissue in obesity, insulin resistance, and diabetes.

Anti-diabetic Effects of Triticum aestivum L. Water Extracts in db/db Mice as an Animal Model of Diabetes Mellitus Type II (제2형 당뇨모델 db/db 마우스에서 밀순 물추출물의 항당뇨 효과)

  • Lee, Sun-Hee;Lim, Sung-Won;Lee, Young-Mi;Hur, Jung-Mu;Lee, Hoi-Seon;Kim, Dae-Ki
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.4
    • /
    • pp.282-288
    • /
    • 2010
  • We evaluated the anti-diabetic effects of Triticum aestivum sprout water extract (TA) in diabetes mellitus type 2. For the experiments, the diabetic animal model db/db mice were divided to 3 groups: diabetic control (db/db) and two experimental groups orally treated with 25 and 100 mg/kg single dose of TA (TA-25 and TA-100, respectively). The lean mice were used as the non-diabetic normal control. All mice have free access to water and AIN-93 diet. TA was administrated to diabetic mice for 5 weeks and the diabetic clinical markers, including blood glucose level, body weight, food intake and insulin level, were measured at a time. After administration for 5 weeks, the blood glucose level was decreased 1.10 and 1.98 folds in TA-25 and TA-100 groups, respectively, compared with db/db group. The body weight and diet consumption were significantly reduced by TA treatment in dose-dependent manner. The treatments of TA-100 also significantly decreased remarkedly liver weight and slightly serum insulin levels when compared with them of the diabetic control group. However the immunohistochemical staining for insulin clearly showed high expression of insulin in the pancreatic islet cells derived from all db/db mice, even if TA was administrated. Moreover, TA-100 treatment significantly improved impaired glucose tolerance in diabetic db/db mice. The results suggest that TA has anti-hyperglycemic effect attenuating blood glucose in the animal model of type 2 diabetes and might be useful as a functional diet for human diabetic diseases.

Metformin Down-regulates $TNF-{\alpha}$ Secretion via Suppression of Scavenger Receptors in Macrophages

  • Hyun, Bobae;Shin, Seulmee;Lee, Aeri;Lee, Sungwon;Song, Youngcheon;Ha, Nam-Joo;Cho, Kyung-Hea;Kim, Kyungjae
    • IMMUNE NETWORK
    • /
    • v.13 no.4
    • /
    • pp.123-132
    • /
    • 2013
  • Obesity is consistently increasing in prevalence and can trigger insulin resistance and type 2 diabetes. Many lines of evidence have shown that macrophages play a major role in inflammation associated with obesity. This study was conducted to determine metformin, a widely prescribed drug for type 2 diabetes, would regulate inflammation through down-regulation of scavenger receptors in macrophages from obesity-induced type 2 diabetes. RAW 264.7 cells and peritoneal macrophages were stimulated with LPS to induce inflammation, and C57BL/6N mice were fed a high-fat diet to generate obesity-induced type 2 diabetes mice. Metformin reduced the production of NO, $PGE_2$ and pro-inflammatory cytokines ($IL-1{\beta}$, IL-6 and $TNF-{\alpha}$) through down-regulation of $NF-{\kappa}B$ translocation in macrophages in a dose-dependent manner. On the other hand, the protein expressions of anti-inflammatory cytokines, IL-4 and IL-10, were enhanced or maintained by metformin. Also, metformin suppressed secretion of $TNF-{\alpha}$ and reduced the protein and mRNA expression of $TNF-{\alpha}$ in obese mice as well as in macrophages. The expression of scavenger receptors, CD36 and SR-A, were attenuated by metformin in macrophages and obese mice. These results suggest that metformin may attenuate inflammatory responses by suppressing the production of $TNF-{\alpha}$ and the expressions of scavenger receptors.

Toosendan Fructus ameliorates the pancreatic damage through the anti-inflammatory activity in non-obese diabetic mice

  • Roh, Seong-Soo;Kim, Yong-Ung
    • The Korea Journal of Herbology
    • /
    • v.30 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • Objectives : The present study was conducted to examine whether Toosendan Fructus has an ameliorative effect on diabetes-induced alterations such as oxidative stress and inflammation in the pancreas of non-obese diabetic (NOD) mice, a model of human type I diabetes. Methods : Extracts of Toosendan Fructus (ETF) were administered to NOD mice at three doses (50 mg/kg, 100 mg/kg and 200 mg/kg). Mice at 18 weeks of age were measured glucose tolerance using intraperitoneal glucose tolerance test. After 28 weeks of ETF treatment, glucose, total cholesterol (TC), triglyceride (TG), and proinflammatory cytokines in serum, western blot analyses and a histopathological examination in pancreas tissue, and on the onset of diabetes were investigated. Results : The results showed that levels of glucose, glucose tolerance, TC, TG, interferon-${\gamma}$, interleukin (IL)-1 ${\beta}$, IL-6, and IL-12 in serum were down-regulated, while IL-4, IL-10, SOD, and catalase significantly increased. In addition, ETF improved protein expression of proinflammatory mediaters (such as cyclooxygenase-2, and inducible nitric oxide synthase) and a proapoptotic protein (caspase-3) in the pancreatic tissue. Also, in the groups treated with ETF (100 mg/kg or 200 mg/kg), insulitis and infiltration of granulocytes were alleviated. Conclusions : Based on these results, the anti-diabetic effect of ETF may be due to its anti-inflammatory and antioxidant effect. Our findings support the therapeutic evidence for Toosendan Fructus ameliorating the development of diabetic pancreatic damage via regulating inflammation and apoptosis. Our future studies will be focused on the search for active compounds in these extracts.

Antioxidant and Hypoglycemic Activity of Polysaccharide from Tea

  • Yu, Zhi;Zhang, Yun;Ni, De-Jiang
    • Korean Journal of Plant Resources
    • /
    • v.19 no.6
    • /
    • pp.670-676
    • /
    • 2006
  • Tea polysaccharide had high antioxidant activity and it could be used to cure diabetes. Antioxidant activity of tea poly-saccharide (TPS) from three kinds of tea (green tea, oolong tea and black tea) were compared, the result indicated that oolong tea polysaccharide (OTPS) had the highest antioxidant activity. In order to explicate the mechanism of antioxidant and hypoglycemic activity, the streptozotocin (STZ)-induced diabetes mice model (DM) was established. The influence of OTPS on blood-glucose, content of MDA and NO, and activities of GSH-PX, SOD, NOS in serum, kidney and liver were investigated. The result showed that after four weeks injection of OTPS to DM mice, the blood-glucose of three treatment group reduced by 14.5%,21.5% and 33.3%, respectively, comparing to the model control. The reduction effect of OTPS increased with the rise of dose. The activity of SOD and GSH-PX elevated significantly, while the activity of NOS decreased. The content of MDA and NO reduced significantly. The above results imply that antioxidant activity was enhanced. Comparing to XKW treatment, the effect of a dose of 300mg/(kg. bw) OTPS was much better. The research showed that the OTPS had a significant effect on reducing blood glucose, and could enhance the antioxidant activity of DM mice.

Histopathological study on the effect of Aloe vera in the pancreatic islets of streptozotocin induced diabetic mice (Streptozotocin 당뇨(糖尿)마우스의 췌도세포(膵島細胞)에 미치는 Aloe vera의 영향에 대한 병리조직학적(病理組織學的) 연구(硏究))

  • Lee, Sang-mog;Yoon, Hwa-jung;Lee, Duck-yoon;Park, Young-e
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.4
    • /
    • pp.549-558
    • /
    • 1989
  • This experiment was carried out to investigate the influence of Aloe vera in the pancreatic islets of streptozotocin diabetic mice. Experimental diabetes was induced in ICR mice with a single injection of SZ(140mg/kg body weight, ip). The mice demonstrating hyperglycemia 48 hours after SZ injection were treated for 16 days with Aloe vera(300, 800mg/kg). Plasma glucose was measured, and for morphological studies of the islets specimens were stained with hematoxylin-eosin and by immunocytochemical methods. Then we observed the morphological changes of islets. Polymorphonuclear cells were infiltrated at the periphery of the islets 48 hours after SZ injection in SZ-treated ICR mice, but no prominent WBC infiltration was observed throughout the experiment. Blood glucose in mice treated with Aloe vera after SZ injection was higher than that of SZ injected mice, and mononuclear cells were heavily infiltrated at the islets 16 days after Aloe vera treatment(300mg/kg), and significant islets infiltration of mononuclear cells was observed 30 days after Aloe vera treatment(800mg/kg). Islets of ICR mice treated with Aloe vera after SZ injection showed severer insulitis, degranulation and necrosis of B cells than those of SZ injected mice. These studies indicate that Aloe vera in SZ injected mice increases vascular permeability and number of WBC in pancreatic islets, and potentiates destruction of B cells by cell-mediated immune system.

  • PDF

Nelumbo nucifera Leaf Extract Regulates Lipid Metabolism and Differentiation in 3T3-L1 Adipocytes and db/db Mice

  • Chul-Min Park;Oh Jin Min;Min-Seok Kim;Bhesh Raj Sharma;Dong Wook Kim;Dong Young Rhyu
    • Natural Product Sciences
    • /
    • v.28 no.4
    • /
    • pp.161-167
    • /
    • 2022
  • Obesity is a complex metabolic disorder that increases the risk for type 2 diabetes, hyperlipidemia, hypertension, and atherosclerosis. In this study, we evaluated the anti-obesity effects of Nelumbo nucifera leaf (NL) extract in 3T3-L1 adipocytes and obese db/db mice. NL extract among various parts (leaf, seed, and root) of N. nucifera most effectively reduced adipogenesis via inhibiting CCAAT enhancer binding protein α (C/EBPα) and peroxisome proliferator activated receptor γ (PPARγ) expression in 3T3-L1 adipocytes. The addition of NL extract enhanced the protein expression of uncoupling protein 2 (UCP2) as compared to untreated 3T3-L1 adipocytes. The oral administration of NL extract (100 mg/kg BW) significantly reduced food efficacy ratio, body weight, and face or total cholesterol level in obese db /db mice. Also, administration of NL extract significantly decreased adipocyte size and C/EBPα or PPARγ expression in the adipose tissues as compared with control (obese db/db mice). Therefore, our results suggest that NL extract among various parts of N. nucifera could be used as a functional food ingredient for the prevention and treatment of metabolic diseases including obesity and diabetes.

Ishige okamurae reduces blood glucose levels in high-fat diet mice and improves glucose metabolism in the skeletal muscle and pancreas

  • Yang, Hye-Won;Son, Myeongjoo;Choi, Junwon;Oh, Seyeon;Jeon, You-Jin;Byun, Kyunghee;Ryu, Bo Mi
    • Fisheries and Aquatic Sciences
    • /
    • v.23 no.9
    • /
    • pp.24.1-24.9
    • /
    • 2020
  • Brown alga (Ishige okamurae; IO) dietary supplements have been reported to possess anti-diabetic properties. However, the effects of IO supplements have not been evaluated on glucose metabolism in the pancreas and skeletal muscle. C57BL/6 N male mice (age, 7 weeks) were arranged in five groups: a chow diet with 0.9% saline (NFD/saline group), high-fat diet (HFD) with 0.9% saline (HFD/saline group). high-fat diet with 25 mg/kg IO extract (HFD/25/IOE). high-fat diet with 50 mg/kg IO extract (HFD/50/IOE), and high-fat diet with 75 mg/kg IO extract (HFD/75/IOE). After 4 weeks, the plasma, pancreas, and skeletal muscle samples were collected for biochemical analyses. IOE significantly ameliorated glucose tolerance impairment and fasting and 2 h blood glucose level in HFD mice. IOE also stimulated the protein expressions of the glucose transporters (GLUTs) including GLUT2 and GLUT4 and those of their related transcription factors in the pancreases and skeletal muscles of HFD mice, enhanced glucose metabolism, and regulated blood glucose level. Our results suggest Ishige okamurae extract may reduce blood glucose levels by improving glucose metabolism in the pancreas and skeletal muscle in HFD-induced diabetes.

Blood Glucose Control and Increase Immunity Effects of β-glucan added Cooked Barley Noodle in High-Fat Diet and Streptozotocin-Induced Diabetic Mice (고지방식이와 streptozotocin으로 유도된 당뇨 생쥐에서 β-glucan이 첨가된 보리숙면의 혈당조절과 면역력증진 효과)

  • Park, Chungmu;Yoon, Hyunseo
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.6 no.2
    • /
    • pp.89-98
    • /
    • 2018
  • Purpose : This study was designed to examine the blood glucose control and increase immunity effects of ${\beta}-glucan$ added cooked barley noodle in streptozotocin-induced diabetes mice with a high-fat diet. Method : Forty-eight male ICR mice (6-week-old) were fed AIN-93 diet for 4 weeks. Mice were divided into six groups: normal, diabetic, cooked barley noodle, ${\beta}-glucan$ (5 %) control and two experimental groups (${\beta}-glucan$ 2.5 % and 5 %, cooked barley noodle contained diet with ${\beta}-glucan$ 2.5 % and 5 % w/w). Diabetes mellitus was induced by intraperitoneal injection of streptozotocin (150 mg/kg). Result : Blood glucose level was significantly decreased in groups consuming cooked barley noodles, but no significant difference was exhibited in diabetic and ${\beta}-glucan$ control group. These results were in accordance with the result of oral glucose tolerance test. Blood interfereon $(IFN)-{\gamma}$ was measured in order to identify increase immunity effect of ${\beta}-glucan$ in diabetic mice. Inhibited $IFN-{\gamma}$ concentration was recovered in cooked barley noodle and ${\beta}-glucan$ control group. Moreover, $IFN-{\gamma}$ concentration was dramatically elevated in ${\beta}-glucan$ contained cooked barley noodle groups in a dose dependent manner. Streptozotocin induced AST and ALT activities were decreased in ${\beta}-glucan$ contained cooked barley noodle groups with a strong lipid lowering effect. Conclusion : Although addition of ${\beta}-glucan$n did not give any significant synergistic effect on cooked barley noodle in blood glucose regulation, suppressed $IFN-{\gamma}$ production by STZ was dramatically enhanced by ${\beta}-glucan$ supplementation in a dose dependent manner. Liver function and blood lipid profile were also in accordance with the increase immunity effect of ${\beta}-glucan$. Consequently, ${\beta}-glucan$ added cooked barley noodle can be consumed as good diets for patients with chronic diseases with reduced immunity.