Browse > Article
http://dx.doi.org/10.5352/JLS.2013.23.6.825

Altered Gene Expression of Inflammatory Cytokines in Adipose Tissue of Streptozotocin-induced Diabetic C57BL/6 Mice  

Lee, Yong-Ho (Department of Biomedical Science, Catholic University of Daegu)
Kim, Jong Bong (Department of Biomedical Science, Catholic University of Daegu)
Publication Information
Journal of Life Science / v.23, no.6, 2013 , pp. 825-831 More about this Journal
Abstract
The aim of this study was to investigate the effects of induced diabetes by streptozotocin (STZ) administration on gene expression of proinflammatory cytokines in adipose tissue of C57/BL6 mice fed either a normal diet (ND) or a high-fat diet (HFD). Four diabetic mice groups (16- or 26-week-old mice fed either ND or HFD) and four control groups of age and diet matched non-diabetic mice were used. By real-time PCR, gene expression levels of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and monocyte chemoattractant protein-1 (MCP-1) were examined in adipose tissue. The results demonstrated that gene expression of TNF-${\alpha}$ was significantly or marginally increased in STZ induced diabetic mice groups compared with non-diabetic groups. On the other hand, MCP-1 gene expression tended to be decreased in diabetic mice compared with non-diabetic controls. Especially, MCP-1 expression level in 16w diabetic mice on HFD was about 26% of that in age and diet matched non-diabetic controls (p<0.001). In addition, MCP-1 gene expression in adipose tissue was correlated with plasma insulin levels (p=0.0002). These results suggest that gene expression of proinflammatory cytokines in adipose tissue is differentially regulated in mouse models of diabetes. The basic data in this study will be useful for elucidating basic mechanisms of inflammatory state and increased expression of proinflammatory cytokines in adipose tissue in obesity, insulin resistance, and diabetes.
Keywords
Adipose tissue; diabetes mellitus; insulin resistance; monocyte chemoattractant protein-1(MCP-1); tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$);
Citations & Related Records
연도 인용수 순위
  • Reference
1 American Diabetes Association. 2007. Diagnosis and classification of diabetes mellitus. Diabetes Care 30, S42-S47.   DOI   ScienceOn
2 Bruun, J. M., Lihn, A. S., Pedersen, S. B. and Richelsen, B. 2005. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J Clin Endocrinol Metab 90, 2282-2289.   DOI
3 Hotamisligil, G. S., Shargill, N. S. and Spiegelman, B. M. 1993. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87-91.   DOI   ScienceOn
4 Hotamisligil, G. S. and Spiegelman, B. M. 1994. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 43, 1271-1278.   DOI   ScienceOn
5 Jain, S. K., Kannan, K., Lim, G., Matthews-Greer, J., McVie, R. and Bocchini, J. A., Jr. 2003. Elevated blood interleukin-6 levels in hyperketonemic type 1 diabetic patients and secretion by acetoacetate-treated cultured U937 monocytes. Diabetes Care 26, 2139-2143.   DOI   ScienceOn
6 Jain, S. K., Kannan, K., Lim, G., McVie, R. and Bocchini, J. A., Jr. 2002. Hyperketonemia increases tumor necrosis factor-alpha secretion in cultured U937 monocytes and Type 1 diabetic patients and is apparently mediated by oxidative stress and cAMP deficiency. Diabetes 51, 2287-2293.   DOI   ScienceOn
7 Jiang, H., Zhu, H., Chen, X., Peng, Y., Wang, J., Liu, F., Shi, S., Fu, B., Lu, Y., Hong, Q., Feng, Z., Hou, K., Sun, X., Cai, G., Zhang, X. and Xie, Y. 2007. TIMP-1 transgenic mice recover from diabetes induced by multiple low-dose streptozotocin. Diabetes 56, 49-56.   DOI   ScienceOn
8 Kahn, S. E., Hull, R. L. and Utzschneider, K. M. 2006. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840-846.   DOI   ScienceOn
9 Kern, P. A., Ranganathan, S., Li, C., Wood, L. and Ranganathan, G. 2001. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 280, E745-751.
10 Kusakabe, T., Tanioka, H., Ebihara, K., Hirata, M., Miyamoto, L., Miyanaga, F., Hige, H., Aotani, D., Fujisawa, T., Masuzaki, H., Hosoda, K. and Nakao, K. 2009. Beneficial effects of leptin on glycaemic and lipid control in a mouse model of type 2 diabetes with increased adiposity induced by streptozotocin and a high-fat diet. Diabetologia 52, 675-683.   DOI   ScienceOn
11 Lee, Y. H., Martin, J. M., Maple, R. L., Tharp, W. G. and Pratley, R. E. 2009. Plasma amyloid-beta peptide levels correlate with adipocyte amyloid precursor protein gene expression in obese individuals. Neuroendocrinology 90, 383-390.   DOI   ScienceOn
12 Lee, Y. H., Nair, S., Rousseau, E., Allison, D. B., Page, G. P., Tataranni, P. A., Bogardus, C. and Permana, P. A. 2005. Microarray profiling of isolated abdominal subcutaneous adipocytes from obese vs non-obese Pima Indians: increased expression of inflammation-related genes. Diabetologia 48, 1776-1783.   DOI   ScienceOn
13 Lee, Y. H. and Pratley, R. E. 2007. Abdominal obesity and cardiovascular disease risk: the emerging role of the adipocyte. J Cardiopulm Rehabil 27, 2-10.   DOI
14 Lee, Y. H. and Pratley, R. E. 2005. The evolving role of inflammation in obesity and the metabolic syndrome. Curr Diab Rep 5, 70-75.   DOI   ScienceOn
15 Li, W., Zhang, M., Gu, J., Meng, Z. J., Zhao, L. C., Zheng, Y. N., Chen, L. and Yang, G. L. 2012. Hypoglycemic effect of protopanaxadiol-type ginsenosides and compound K on Type 2 diabetes mice induced by high-fat diet combining with streptozotocin via suppression of hepatic gluconeogenesis. Fitoterapia 83, 192-198.   DOI   ScienceOn
16 Parikh, H., Carlsson, E., Chutkow, W. A., Johansson, L. E., Storgaard, H., Poulsen, P., Saxena, R., Ladd, C., Schulze, P. C., Mazzini, M. J., Jensen, C. B., Krook, A., Bjornholm, M., Tornqvist, H., Zierath, J. R., Ridderstrale, M., Altshuler, D., Lee, R. T., Vaag, A., Groop, L. C. and Mootha, V. K. 2007. TXNIP regulates peripheral glucose metabolism in humans. PLoS Med 4, e158.   DOI
17 Lumeng, C. N., Deyoung, S. M., Bodzin, J. L. and Saltiel, A. R. 2007. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56, 16-23.   DOI   ScienceOn
18 Lyon, C. J., Law, R. E. and Hsueh, W. A. 2003. Minireview: adiposity, inflammation, and atherogenesis. Endocrinology 144, 2195-2200.   DOI   ScienceOn
19 Palanivel, R., Vu, V., Park, M., Fang, X. and Sweeney, G. 2008. Differential impact of adipokines derived from primary adipocytes of wild-type versus streptozotocin-induced diabetic rats on glucose and fatty acid metabolism in cardiomyocytes. J Endocrinol 199, 389-397.   DOI   ScienceOn
20 Pi-Sunyer, F. X. 2002. The obesity epidemic: pathophysiology and consequences of obesity. Obes Res 10, 97S-104S.   DOI
21 Poucher, S. M., Cheetham, S., Francis, J., Zinker, B., Kirby, M. and Vickers, S. P. 2012. Effects of saxagliptin and sitagliptin on glycaemic control and pancreatic beta-cell mass in a streptozotocin-induced mouse model of type 2 diabetes. Diabetes Obes Metab 14, 918-926.   DOI   ScienceOn
22 Rajala, M. W. and Scherer, P. E. 2003. Minireview: The adipocyte--at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 144, 3765-3773.   DOI   ScienceOn
23 Reed, M. J., Meszaros, K., Entes, L. J., Claypool, M. D., Pinkett, J. G., Gadbois, T. M. and Reaven, G. M. 2000. A new rat model of type 2 diabetes: the fat-fed, streptozotocin- treated rat. Metabolism 49, 1390-1394.   DOI   ScienceOn
24 Ronti, T., Lupattelli, G. and Mannarino, E. 2006. The endocrine function of adipose tissue: an update. Clin Endocrinol (Oxf) 64, 355-365.
25 Srinivasan, K., Viswanad, B., Asrat, L., Kaul, C. L. and Ramarao, P. 2005. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52, 313-320.   DOI   ScienceOn
26 Sartipy, P. and Loskutoff, D. J. 2003. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci USA 100, 7265-7270.   DOI   ScienceOn
27 Schnedl, W. J., Ferber, S., Johnson, J. H. and Newgard, C. B. 1994. STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes 43, 1326-1333.   DOI   ScienceOn
28 Shoelson, S. E., Lee, J. and Goldfine, A. B. 2006. Inflammation and insulin resistance. J Clin Invest 116, 1793-1801.   DOI   ScienceOn
29 Tozzo, E., Gnudi, L. and Kahn, B. B. 1997. Amelioration of insulin resistance in streptozotocin diabetic mice by transgenic overexpression of GLUT4 driven by an adipose-specific promoter. Endocrinology 138, 1604-1611.   DOI   ScienceOn
30 Vozarova, B., Weyer, C., Hanson, K., Tataranni, P. A., Bogardus, C. and Pratley, R. E. 2001. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes Res 9, 414-417.   DOI   ScienceOn
31 Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L. and Ferrante, A. W., Jr. 2003. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112, 1796-1808.   DOI
32 Xu, H., Barnes, G. T., Yang, Q., Tan, G., Yang, D., Chou, C. J., Sole, J., Nichols, A., Ross, J. S., Tartaglia, L. A. and Chen, H. 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112, 1821-1830.   DOI   ScienceOn
33 Yamamoto, H., Uchigata, Y. and Okamoto, H. 1981. Streptozotocin and alloxan induce DNA strand breaks and poly (ADP-ribose) synthetase in pancreatic islets. Nature 294, 284-286.   DOI   ScienceOn
34 Kershaw, E. E. and Flier, J. S. 2004. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89, 2548-2556.   DOI   ScienceOn