DOI QR코드

DOI QR Code

Blood Glucose Control and Increase Immunity Effects of β-glucan added Cooked Barley Noodle in High-Fat Diet and Streptozotocin-Induced Diabetic Mice

고지방식이와 streptozotocin으로 유도된 당뇨 생쥐에서 β-glucan이 첨가된 보리숙면의 혈당조절과 면역력증진 효과

  • Park, Chungmu (Dept. of Clinical Laboratory Science, Dong-Eui University) ;
  • Yoon, Hyunseo (Dept. of Dental Hygiene, Dong-Eui University)
  • 박충무 (동의대학교 임상병리학과) ;
  • 윤현서 (동의대학교 치위생학과)
  • Received : 2018.05.17
  • Accepted : 2018.06.08
  • Published : 2018.06.30

Abstract

Purpose : This study was designed to examine the blood glucose control and increase immunity effects of ${\beta}-glucan$ added cooked barley noodle in streptozotocin-induced diabetes mice with a high-fat diet. Method : Forty-eight male ICR mice (6-week-old) were fed AIN-93 diet for 4 weeks. Mice were divided into six groups: normal, diabetic, cooked barley noodle, ${\beta}-glucan$ (5 %) control and two experimental groups (${\beta}-glucan$ 2.5 % and 5 %, cooked barley noodle contained diet with ${\beta}-glucan$ 2.5 % and 5 % w/w). Diabetes mellitus was induced by intraperitoneal injection of streptozotocin (150 mg/kg). Result : Blood glucose level was significantly decreased in groups consuming cooked barley noodles, but no significant difference was exhibited in diabetic and ${\beta}-glucan$ control group. These results were in accordance with the result of oral glucose tolerance test. Blood interfereon $(IFN)-{\gamma}$ was measured in order to identify increase immunity effect of ${\beta}-glucan$ in diabetic mice. Inhibited $IFN-{\gamma}$ concentration was recovered in cooked barley noodle and ${\beta}-glucan$ control group. Moreover, $IFN-{\gamma}$ concentration was dramatically elevated in ${\beta}-glucan$ contained cooked barley noodle groups in a dose dependent manner. Streptozotocin induced AST and ALT activities were decreased in ${\beta}-glucan$ contained cooked barley noodle groups with a strong lipid lowering effect. Conclusion : Although addition of ${\beta}-glucan$n did not give any significant synergistic effect on cooked barley noodle in blood glucose regulation, suppressed $IFN-{\gamma}$ production by STZ was dramatically enhanced by ${\beta}-glucan$ supplementation in a dose dependent manner. Liver function and blood lipid profile were also in accordance with the increase immunity effect of ${\beta}-glucan$. Consequently, ${\beta}-glucan$ added cooked barley noodle can be consumed as good diets for patients with chronic diseases with reduced immunity.

Keywords

References

  1. 강병만, 심미옥, 김민석 등(2017). 지방분화가 유도된 3T3-L1 세포와 고지방식이로 유도된 마우스에서 보리순 물추출물의 항비만 효과. 한국약용작물학회지, 25(6), 367-374. https://doi.org/10.7783/KJMCS.2017.25.6.367
  2. 강스미, 송상훈(2016). 현미, 발아현미, 보리, 메밀의 주요 성분 및 건강 기능성. 산업식품공학, 20(3), 175-182.
  3. 김아라, 이명렬, 이재준(2012). 보리순 에탄올 추출물이 고콜레스테롤 식이를 급여한 흰쥐의 지질대사에 미치는 영향. 동물생명과학연구, 4, 15-22.
  4. 김정욱, 차재영, 허진선 등(2008). Streptozotocin-유발 당뇨쥐에 대한 클로렐라 열수 추출물의 혈당 강하 효과. 생명과학회지, 18(11), 1584-1591. https://doi.org/10.5352/JLS.2008.18.11.1584
  5. 대한당뇨병학회(2017). Diabetes Fact Sheet in Korea 2016.
  6. 보건복지부(2016). 국민건강영양조사 제 6기 3차년도 (2015) 주요결과. 질병관리본부 질병예방센터 건강영양조사과.
  7. 손희경, 이유미, 박용현 등(2016). 보리순이 당뇨쥐의 혈당조절에 미치는 효과. 한국지역사회생활과학회지, 27(1), 19-29. https://doi.org/10.7856/kjcls.2016.27.1.19
  8. 송지영, 윤기주, 윤혜경 등(2001). 표고버섯과 보리에서 추출한 ${\beta}$-glucan이 Alloxan 유발 당뇨 마우스의 혈당 및 지질 성분에 미치는 영향. 한국식품과학회지, 33(6), 802-807.
  9. 양은주, 조영숙, 최명숙 등(2009). 보리순이 고지방을 급여한 마우스의 지질 함량과 간조직의 지질대사 관련 효소활성에 미치는 영향. 한국영양학회지, 42(1), 14-22.
  10. 유연석, 이경식, 조경환 등(2009). 보리가 혈당 변화와 지질 대사에 미치는 단기영향. 대한가정의학회지, 30(10), 790-795.
  11. 이동진, 김현웅, 박상구 등(2007). 보리 유전자원 종실 추출액의 항산화 및 항암 활성. 한국국제농업개발학회지, 19(3), 186-190.
  12. 이현서(2015). 제2형 당뇨병 마우스 모델에서 싹 채소 추출물의 항당뇨 효과. 원광대학교 대학원, 박사학위 논문.
  13. 통계청(2017). 국민삶의질 지표. 기대수명, 건강수준별 기대여명. https://qol.kostat.go.kr/blife/result-idx.do?oaYear=2011&idctId=201304908
  14. 황교순, 노용균, 송홍지 등(2008). 성인에서의 베타글루칸의 혈당조절 효과: 메타분석. 대한가정의학회, 29(7), 475-483.
  15. Angeli JP, Ribeiro LR, Angeli JL, et al (2009). Protective effects of b-glucan extracted from barley against benzo[a]pyrene-induced DNA damage in hepatic cell HepG2. Exp Toxicol Pathol, 61(1), 83-89. https://doi.org/10.1016/j.etp.2008.05.003
  16. Behall KM, Scholfield DJ, Hallfrisch J(2004). Diets containing barley significantly reduce lipids in mildly hypercholesterolemic men and women. Am J Clin Nutr, 80(5), 1185-1193. https://doi.org/10.1093/ajcn/80.5.1185
  17. Bourdon I, Yokoyama W, Davis P, et al(1999). Postprandial lipid, glucose, insulin, and cholecystokinin responses in men fed barley pasta enriched with beta-glucan. Am J Clin Nutr, 69(1), 55-63. https://doi.org/10.1093/ajcn/69.1.55
  18. Koji H, Rhyoji K, Mikio I(2006). Strain differences in the diabetogenic activity of streptozotocin in mice. Biol Pharm Bull, 29(6), 1110-1119. https://doi.org/10.1248/bpb.29.1110
  19. Keogh GF, Cooper GJ, Mulvey TB, et al(2003). Randomized crossover study of the effect of a highly beta-glucan enriched barley on CVD risk factors in mildly hypercholesterolemic men. Am J Clin Nutr, 78(4), 711-718. https://doi.org/10.1093/ajcn/78.4.711
  20. Kusmiati, Dhewantata FXR(2016). Cholesterol-lowering effect of beta glucan extracted from saccharomyces cerevisiae in rats. Sci Pharm, 84(1), 153-166. https://doi.org/10.3797/scipharm.ISP.2015.07
  21. Li J, Wang J, Kaneko T, et al(2004). Effects of fiber intake on the blood pressure, lipids, and heart rate in Goto Kakizaki rats. Nutrition, 20(11-12), 1003-1007. https://doi.org/10.1016/j.nut.2004.08.010
  22. Lovegrove JA, Clohessy A, Milon H, et al(2000). Modest doses of beta-glucan do not reduce concentrations of potentially atherogenic lipoproteins. Am J Clin Nutr, 72(1), 49-55. https://doi.org/10.1093/ajcn/72.1.49
  23. Poppitt SD, van Drunen JD, McGill AT, et al(2007). Supplementation of a high-carbohydrate breakfast with barley beta-glucan improves postprandial glycaemic response for meals but not beverages. Asia Pac J Clin Nutr, 16(1), 16-24.
  24. Reeves PG, Nielsen FH, Fahey GC(1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc Writing Committee on the reformulation of the AIN-76A rodent diet. J Nutr 123(11), 1939-1951. https://doi.org/10.1093/jn/123.11.1939
  25. Sharma P, Gujral HS(2010). Antioxidant and polyphenol oxidase activity of germinated barley and its milling fractions. Food Chem, 120(3), 673-678. https://doi.org/10.1016/j.foodchem.2009.10.059
  26. 한국보건사회연구원(2007). htps://www.kihasa.re.kr/web/activity/research/view.do?me nuId=38&bid=93&ano=292