• Title/Summary/Keyword: device factor

Search Result 1,243, Processing Time 0.051 seconds

The Study of Accelerated Life Test for Micro Display Device (마이크로 디스플레이 디바이스의 가속수명시험에 관한 연구)

  • 차상목;윤성록;조여욱
    • Journal of Applied Reliability
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2002
  • This paper is concerned about an Accelerated Life Test for Micro Display Device which is being used in a Projection TV, in order to find a failure mode occurred in field in a short time, to identify a major factor to affect a life, and to estimate a mean life. For this purpose, we selected a temperature as a accelerated factor to perform a test and measured degradation of display device using visual inspection and chromaticity table. In the result of Accelerated Life Test, it is confirmed that failure mode is equal to the degradation of display device by vendor and the Temperature is a major factor to affect a failure. Besides, according as the display device is turned to green as degraded, it is identified that the change of the chromaticity value is one method to measure the degree of the degradation . So, we applied the optimal condition, which consider a cost and life to lower the Temperature which is a major factor acquired by the result of ALT, to PTV design

  • PDF

Development of advanced Power Factor Computation Algorithm in Harmonics distorted Distribution System (고조파 왜곡 환경에서 향상된 역률 계측 알고리즘 개발)

  • Lee, Hyun-woo;Park, Young-kyun;Lee, Jinhan;Joung, Sanghyun;Park, Chul-woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.121-127
    • /
    • 2016
  • We propose a algorithm to calculate power factor of fundamental waveform in an environment where the voltage and current have been distorted by harmonics. In the proposed power factor computation algorithm, voltage and current are converted to rotating DQ reference frame, and power factor is calculated from active power and reactive power. We compare the proposed method with the conventional power factor measurement method as mathematically. In a condition that voltage and current are distorted by harmonics, the proposed method accurately measure the power factor of fundamental wave, and it is confirmed by simulation using MATLAB. If the proposed power factor measurement method is applied to an automatic power factor control system, a power factor compensation performance can be maximized in harmonic distortion environment. As a result, it is possible to reduce electricity prices, reduce line loss, increase load capacity, ensure the transmission margin capacity, and reduce the amount of power generation.

A Study on the Color Usability of Lumino Haptic Device (루미노 햅틱 디바이스의 색상 사용성 연구)

  • Lee, Sang-Jin;Kim, Byeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • Haptic device is regarded as the human machine interface technology for easier, more accurate, and intuitive operation. The purpose of this study is to define driver's affection on the haptic device in terms of its design factor : the color of haptic lighting as independent factor. This paper is studied to improve the cognitive ability of existing vehicle haptic device used by only a tactile feedback. On the color feedback usability evaluation, the lmino haptic device is used by adding color feedback to the existing vehicle haptic device. The emotional factor that driver has on the haptic device is extracted by the sensibility analysis. As a result, it is possible to suggest the design direction that satisfies the driver.

Digital Life Index of Babyboom Generation (베이비붐세대의 디지털라이프 지수)

  • Kwon, Soon-Jae;Kim, Mee Ryoung
    • The Journal of Information Systems
    • /
    • v.23 no.1
    • /
    • pp.161-184
    • /
    • 2014
  • Our study measures the Digital Life Index (DLI) of baby boomers by considering the utilization of digital devices in their everyday life. The study was conducted by implementing the following three-step approach: (1) development of survey questions and data collection; (2) build Digital Life Index (DLI) model and lastly; (3) empirical analysis using the Digital Life Index (DLI). In the first stage in order to develop the survey questions to measure the digital index, two surveys were conducted. For the first preliminary survey, it was done based on the existing literatures which enabled this investigation through FGI analysis involving real professionals. The second survey was conducted by commissioning a specialized external firm. In this survey, a total of 400 data was collected to verify the validity and objectivity of the data sample. The data gathered through the survey questions was used to develop the digital index. Firstly, the appropriate factors were extracted by conducting factor analysis. This factor analysis validates and verifies the factors which are appropriate in measuring Digital Life Index (DLI). The derived factors are broadly divided into five main factors. The first factor describes the possession, purchase and use of digital device (x1). Meanwhile, the second factor describes the digital device's software (x2) and the third factor describes the participation in utilizing digital device (x3). The fourth factor describes the utilization of digital device in human personal relationship (x4) and lastly, the fifth factor describes the effect of digital device in everyday life and work environment (x5). Secondly, the digital index model was developed. The variables to represent the Digital Life Index (DLI) are ${\chi}1t,{\chi}2t,{\chi}3t,{\chi}4t$ and ${\chi}5t$. Furthermore, as experience in using the digital index grows overtime, the growth can be represented by the "S" shape. Based on the results, Digital Life Index(DLI) is distributed with the highest point at 90.3 and the lowest point at 25.9.

Development of Voltage Controlled Power Factor Compensation System using Slidac (슬라이닥을 이용하는 전압 제어 방식의 역률보상시스템 개발)

  • Joung, Sanghyun;Lee, Hyun-woo;Park, Young-kyun;Park, Chul-woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.115-122
    • /
    • 2017
  • In this paper, we propose a novel power factor compensation system using slidac. The proposed power factor compensation system compensates the power factor by adjusting the output voltage of the slidac. In the conventional power factor compensation system using capacitor bank method, the power factor compensation error occurs depending on the load condition due to the limitation of the compensation capacitor capacity. However, the proposed system can finely change slidac output voltage applied to the capacitor, therefore power factor can be compensated up to 100% without error. We compare the proposed system with the conventional system, and confirm that the proposed system has excellent power factor compensation performance through simulations and experiments. If the proposed power factor compensation system is applied to an industrial field, a power factor compensation performance can be maximized. As a result, it is possible to reduce of electricity prices, reduce of line loss, increase of load capacity, ensure the transmission margin capacity, and reduce the amount of power generation.

A Novel Calibration Method Research of the Scale Factor for the All-optical Atomic Spin Inertial Measurement Device

  • Zou, Sheng;Zhang, Hong;Chen, Xi-yuan;Chen, Yao;Fang, Jian-cheng
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.415-420
    • /
    • 2015
  • A novel method to measure the scale factor for the all-optical atomic spin inertial measurement device (ASIMD) is demonstrated in this paper. The method can realize the calibration of the scale factor by a self-consistent method with small errors in the quiescent state. At first, the matured IMU (inertial measurement unit) device was fixed on an optical platform together with the ASIMD, and it has been used to calibrate the scale factor for the ASIMD. The results show that there were some errors causing the inaccuracy of the experiment. By the comparative analysis of theory and experiment, the ASIMD was unable to keep pace with the IMU. Considering the characteristics of the ASIMD, the mismatch between the driven frequency of the optical platform and the bandwidth of the ASIMD was the major reason. An all-optical atomic spin magnetometer was set up at first. The sensitivity of the magnetometer is ultra-high, and it can be used to detect the magnetization of spin-polarized noble gas. The gyromagnetic ratio of the noble gas is a physical constant, and it has already been measured accurately. So a novel calibration method for scale factor based on the gyromagnetic ratio has been presented. The relevant theoretical analysis and experiments have been implemented. The results showed that the scale factor of the device was $7.272V/^{\circ}/s$ by multi-group experiments with the maximum error value 0.49%.

Wafer-Level Packaged MEMS Resonators with a Highly Vacuum-Sensitive Quality Factor

  • Kang, Seok Jin;Moon, Young Soon;Son, Won Ho;Choi, Sie Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.632-639
    • /
    • 2014
  • Mechanical stress and the vacuum level are the two main factors dominating the quality factor of a resonator operated in the vacuum range 1 mTorr to 10 Torr. This means that if the quality factor of a resonator is very insensitive to the mechanical stress in the vacuum range, it is sensitive to mainly the ambient vacuum level. In this paper, a wafer-level packaged MEMS resonator with a highly vacuum-sensitive quality factor is presented. The proposed device is characterized by a package with out-of-plane symmetry and a suspending structure with only a single anchor. Out-of-plane symmetry helps prevent deformation of the packaged device due to thermal mismatch, and a single-clamped structure facilitates constraint-free displacement. As a result, the proposed device is very insensitive to mechanical stress and is sensitive to mainly the ambient vacuum level. The average quality factors of the devices packaged under pressures of 50, 100, and 200 mTorr were 4987, 3415, and 2127, respectively. The results demonstrated the high controllability of the quality factor by vacuum adjustment. The mechanical robustness of the quality factor was confirmed by comparing the quality factors before and after high-temperature storage. Furthermore, through more than 50 days of monitoring, the stability of the quality factor was also certified.

디지탈 화상처리를 이용한 사출제품의 길이측정용 시각검사시스템 개발에 관한 연구

  • 김재열;박환규;오보석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.281-285
    • /
    • 1996
  • In this paper, I made visual inspection system using Vision Board and it is consist of an illuminator (a fluorescent lamp), image input device(CCD(Charge)Coupled Device) camera), image processing system(Vision Board(FARAMVB-02), image output device(videomonitor, printer), a measuring instrument(TELMN1000). Length measurement by visual inspection system is used 100mm gauge block instead of calculating distance between camera and object, it measured horizontal and vertical length factor from 400mm to 650mm by increasing 50mm. In this place, measured horizontal and vertical length factor made use of length measurement of a injection. A measuring instrument used to compare a measured length of a injection visual inspection system with it. In conclusion, length measurement of a injection compared a measuring instrument withvisual inspecion system using length factor of 100mm guage block. Maximum error of length compared two devices a measuring instrument with visual inspection system is 0.55mm. And operation program is made up Borland C++ 3.1. By changing, it is applied to various uses.

  • PDF

Simulation Study on the Safety of a Fastening Device of Agricultural By-product Collector (동역학 시뮬레이션을 통한 농업부산물 수집기 체결장치의 안전성 분석)

  • Jeong-Hun Kim;Seok-Joon Hwang;Ju-Seok Nam
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.42-49
    • /
    • 2023
  • In this study, the safety of fastening device for the agricultural by-product collector was evaluated according to the driving ground conditions by deriving the stress, static safety factor, and fatigue life using dynamic simulation. A 3D modeling of agricultural by-product collector was carried out, and simulation model was developed by applying the material properties. As a result of dynamic simulation, the magnitude of the maximum stress generated in the fastening device was the highest when driving on the flat off-road, followed by sloped pave-road and flat pave-road. Static safety factor and fatigue life were the highest when driving on the flat pave-road, followed by sloped pave-road and flat off-road. The safety of fastening device was confirmed that static safety factor was more than 1.0 and service life exceeded 9 years in all driving ground conditions.

Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient

  • Kim, Ji Hyeon;Sim, Jiyeon;Kim, Hyun-Jung
    • Biomolecules & Therapeutics
    • /
    • v.26 no.4
    • /
    • pp.380-388
    • /
    • 2018
  • Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro, we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.