• 제목/요약/키워드: device degradation

검색결과 474건 처리시간 0.024초

Research Trends on Interface-type Resistive Switching Characteristics in Transition Metal Oxide (전이 금속 산화물 기반 Interface-type 저항 변화 특성 향상 연구 동향)

  • Dong-eun Kim;Geonwoo Kim;Hyung Nam Kim;Hyung-Ho Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • 제30권4호
    • /
    • pp.32-43
    • /
    • 2023
  • Resistive Random Access Memory (RRAM), based on resistive switching characteristics, is emerging as a next-generation memory device capable of efficiently processing large amounts of data through its fast operation speed, simple device structure, and high-density implementation. Interface type resistive switching offer the advantage of low operation currents without the need for a forming process. Especially, for RRAM devices based on transition metal oxides, various studies are underway to enhance the memory characteristics, including precise material composition control and improving the reliability and stability of the device. In this paper, we introduce various methods, such as doping of heterogeneous elements, formation of multilayer films, chemical composition adjustment, and surface treatment to prevent degradation of interface type resistive switching properties and enhance the device characteristics. Through these approaches, we propose the feasibility of implementing high-efficient next-generation non-volatile memory devices based on improved resistive switching properties.

Analysis of Electrical Characteristics due to Deep Level Defects in 4H-SiC PiN Diodes (4H-SiC PiN 다이오드의 깊은 준위 결함에 따른 전기적 특성 분석)

  • Tae-Hee Lee;Se-Rim Park;Ye-Jin Kim;Seung-Hyun Park;Il Ryong Kim;Min Kyu Kim;Byeong Cheol Lim;Sang-Mo Koo
    • Korean Journal of Materials Research
    • /
    • 제34권2호
    • /
    • pp.111-115
    • /
    • 2024
  • Silicon carbide (SiC) has emerged as a promising material for next-generation power semiconductor materials, due to its high thermal conductivity and high critical electric field (~3 MV/cm) with a wide bandgap of 3.3 eV. This permits SiC devices to operate at lower on-resistance and higher breakdown voltage. However, to improve device performance, advanced research is still needed to reduce point defects in the SiC epitaxial layer. This work investigated the electrical characteristics and defect properties using DLTS analysis. Four deep level defects generated by the implantation process and during epitaxial layer growth were detected. Trap parameters such as energy level, capture-cross section, trap density were obtained from an Arrhenius plot. To investigate the impact of defects on the device, a 2D TCAD simulation was conducted using the same device structure, and the extracted defect parameters were added to confirm electrical characteristics. The degradation of device performance such as an increase in on-resistance by adding trap parameters was confirmed.

Comparative Analysis of Flicker Noise and Reliability of NMOSFETs with Plasma Nitrided Oxide and Thermally Nitrided Oxide (Plasma Nitrided Oxide와 Thermally Nitrided Oxide를 적용한 NMOSFET의 Flicker Noise와 신뢰성에 대한 비교 분석)

  • Lee, Hwan-Hee;Kwon, Hyuk-Min;Kwon, Sung-Kyu;Jang, Jae-Hyung;Kwak, Ho-Young;Lee, Song-Jae;Go, Sung-Yong;Lee, Weon-Mook;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제24권12호
    • /
    • pp.944-948
    • /
    • 2011
  • In this paper, flicker noise characteristic and channel hot carrier degradation of NMOSFETs with plasma nitrided oixde (PNO) and thermally nitrided oxide (TNO) are analyzed in depth. Compared with NMOSFET with TNO, flicker noise characteristic of NMOSFET with PNO is improved significantly because nitrogen density in PNO near the Si/$SiO_2$ interface is less than that in TNO. However, device degradation of NMOSFET with PNO by channel hot carrier stress is greater than that with TNO although PMOSFET with PNO showed greater immunity to NBTI degradation than that with TNO in previous study. Therefore, concurrent investigation of the reliability as well as low frequency noise characteristics of NMOSFET and PMOSFET is required for the development of high performance analog MOSFET technology.

An experimental study on the characteristic times of viscoelastic fluids by falling ball viscometer (낙구식 점도계를 이용한 점탄성 유체의 특성시간에 관한 실험적 연구)

  • 전찬열;유상신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제14권1호
    • /
    • pp.241-250
    • /
    • 1990
  • Characteristic relaxation time and characteristic diffusion time of viscoelastic fluids are determined experimentally by measuring the zero-shear-rate viscosity by falling ball viscometer and the infinite-shear-rate viscosity by capillary tube viscometer. Fluids used in experiments are aqueous solutions of polyacrylamide Separan AP-273 and the polymer concentrations range from 300 to 2000 wppm. A newly designed laser beam and timer system is employed to overcome the difficulty in measuring terminal velocities of the low concentration solutions. Ball removal device is prepared to remove the dropped ball from the bottom of cylinder without disturbing the testing fluid. In order to measure the zero-shear-rate viscosity, densities of hollow aluminium balls are adjusted very close to the densities of testing fluids. Characteristic diffusion time, which is ball viscometer. However, terminal velocity of a needle by falling ball viscometer is not affected by the time interval of dropping needles and characteristic diffusion time is not measured with a dropping needle. Powell-Eyring model predicts the highest values of the characteristic relaxation times among models used for heat transfer experimental works for a given polymer solution. As degradation of a polymer solution continues, the zero-shear-rate viscosity decreases more seriously than the infinite-shear-rate viscosity. Characteristic relaxation times of polymer solutions decreases as degradation continues.

Optical Line Remote-Monitoring System Using Reflecting Filter (반사필터를 이용한 광선로 원격감시 시스템)

  • Jung, So-Ki;Cha, Kyoung Cheon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제39A권6호
    • /
    • pp.357-364
    • /
    • 2014
  • In this paper deals with PON Remote monitoring solution using Reflecting Filter. The current FTTH-PON can not be monitored in real time that Optical cable fault and Quality degradation of Splitter. To solve this problem, Monitoring can make Feeder Network and Splitter that Reflecting filter development using the basic structure of Fiber Bragg grating. Reflecting Filter is Quality Monitoring System shall provide tools for user to view and analyze degradation of cables and splitter in particular predict any gradual component degradation(Optical cable bending, splice, connector, etc) before it becomes service impacting. The Reflecting Filter solution is splitter down and confirm the fault location of optical cable and it will send central control station can be monitored system an alarm to the OLT. In other words, wavelength side branches Mating existing communication affairs (Coupler) using the core of one optical wavelength for live monitoring two wavelengths and sends the subscriber side modem and aggregation switch device remotely using a reflective optical line filter monitoring the study of the system. this study can development of Reflecting filter improve the average processing time of Optical cable fault and efficient Maintenance of the network.

Controlled Release Dosage Form of Narcotic Antagonist(I): Synthesis of Biodegradable Polyphosphazenes and Preparation and Release Characteristics of Naloxone Implant (마약길항제의 방출 제어형 제제 (제1보) : 생체분해성 polyphosphazenes의 합성과 나록손 이식제제의 제조 및 용출특성)

  • Park, Joo-Ae;Lee, Seung-Jin;Kim, Hyung-Kuk;Kim, Kil-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • 제25권2호
    • /
    • pp.109-116
    • /
    • 1995
  • For the administration of narcotic antagonist with short half-life and low patient compliance, the sustained release system using biodegradable matrix is effective. Polyphosphazenes are of considerable interest as biodegradable matrix systems for controlled release of drugs. In this study, biodegradable polyphosphazenes available for the sustained release implantable device were synthesized, and their application was examined. Poly[dichlorophosphazene] was synthesized by solution polymerization method and confirmed with IR spectrum. Poly[bis(ethyl glycinate) phosphazene] and poly[ (diethyl glutamate)-co-(ethyl glycinate)phosphazene] were then produced by substitution of amino acid alkyl esters for chloride side groups. Using these polymers, the implantable devices of 1 mm thickness and $10{\times}10\;mm$ size containing naloxone hydrochloride were prepared and their release and degradation profiles were measured. In the case of poly[bis(ethyl glycinate)phosphazene] with swelling characteristics, degradation rate was slower than the release rate, showing that the release rate is partly dependent on the swelling rate. In contrast, the degradation rate of polyl[(diethyl glutamate)-co-(ethyl glycinate)phosphazene] matrix was identical with release rate of naloxone hydrochloride. On the basis of these results, it is expected that these polymers can be applied to sustained release implantable systems delivering narcotic antagonist.

  • PDF

Measurement-based Channel Hopping Scheme against Jamming Attacks in IEEE 802.11 Wireless Networks (IEEE 802.11 무선랜 재밍 환경에서의 측정 기반 채널 도약 기법)

  • Jeong, Seung-Myeong;Jeung, Jae-Min;Lim, Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제37권4A호
    • /
    • pp.205-213
    • /
    • 2012
  • In this paper, we propose a new channel hopping scheme based on IEEE 802.11h as a good countermeasure against jamming attacks in IEEE 802.11 wireless networks. 802.11h Dynamic Frequency Selection (DFS) is a mechanism which enables hopping to a best channel with full channel measurement, not a randomly chosen channel, when the current link quality degradation occurs due to interferers such as military radars. However, under jammer attacks, this needs a time for full channel measurement before a new channel hopping and due to link disconnection during the time network performance degradation is inevitable. In contrast, our proposed schemes make an immediate response right after a jammer detection since every device is aware of next hopping channel in advance. To do this, a next hopping channel is announced by Beacon frames and the channel is selected by full channel measurement within Beacon intervals. Simulation results show that proposed scheme minimizes throughput degradation and keeps the advantages of DFS.

Degradation of residual pharmaceuticals in water by UV/H2O2 advanced oxidation process (UV/H2O2 고도산화기술을 이용한 수중 잔류의약물질 제거)

  • Park, Chinyoung;Seo, Sangwon;Cho, Ikhwan;Jun, Yongsung;Ha, Hyunsup;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제33권6호
    • /
    • pp.469-480
    • /
    • 2019
  • This study was conducted to evaluate the degradation and mineralization of PPCPs (Pharmaceuticals and Personal Care Products) using a CBD(Collimated Beam Device) of UV/H2O2 advanced oxidation process. The decomposition rate of each substance was regarded as the first reaction rate to the ultraviolet irradiation dose. The decomposition rate constants for PPCPs were determined by the concentration of hydrogen peroxide and ultraviolet irradiation intensity. If the decomposition rate constant is large, the PPCPs concentration decreases rapidly. According to the decomposition rate constant, chlortetracycline and sulfamethoxazole are expected to be sufficiently removed by UV irradiation only without the addition of hydrogen peroxide. In the case of carbamazepine, however, very high UV dose was required in the absence of hydrogen peroxide. Other PPCPs required an appropriate concentration of hydrogen peroxide and ultraviolet irradiation intensity. The UV dose required to remove 90% of each PPCPs using the degradation rate constant can be calculated according to the concentration of hydrogen peroxide in each sample. Using this reaction rate, the optimum UV dose and hydrogen peroxide concentration for achieving the target removal rate can be obtained by the target PPCPs and water properties. It can be a necessary data to establish design and operating conditions such as UV lamp type, quantity and hydrogen peroxide concentration depending on the residence time for the most economical operation.

Characteristics Evaluation of Al2O3 ALD Thin Film Exposed to Constant Temperature and Humidity Environment (항온항습 환경에 노출된 Al2O3 ALD 박막의 특성 평가)

  • Kim, Hyeun Woo;Song, Tae Min;Lee, Hyeong Jun;Jeon, Yongmin;Kwon, Jeong Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • 제21권2호
    • /
    • pp.11-14
    • /
    • 2022
  • In this work, we evaluated the Al2O3 film, which was deposited by atomic layer deposition, degraded by exposure to harsh environments. The Al2O3 films deposited by atomic layer deposition have long been used as a gas diffusion barrier that satisfies barrier requirements for device reliability. To investigate the barrier and mechanical performance of the Al2O3 film with increasing temperature and relative humidity, the properties of the degraded Al2O3 film exposed to the harsh environment were evaluated using electrical calcium test and tensile test. As a result, the water vapor transmission rate of Al2O3 films stored in harsh environments has fallen to a level that is difficult to utilize as a barrier film. Through water vapor transmission rate measurements, it can be seen that the water vapor transmission rate changes can be significant, and the environment-induced degradation is fatal to the Al2O3 thin films. In addition, the surface roughness and porosity of the degraded Al2O3 are significantly increased as the environment becomes severer. the degradation of elongation is caused by the stress concentration at valleys of rough surface and pores generated by the harsh environment. Becaused the harsh envronment-induced degradation convert amorphous Al2O3 to crystalline structure, these encapsulation properties of the Al2O3 film was easily degraded.

METHODOLOGY TO ENHANCE THE PREDICTABILITY OF I/O DATA EXCHANGE BETWEEN DEVICE AND TASKS (장치와 태스크 간 입출력 데이터 교환의 예측성 향상 방안)

  • Koo, Cheol-Hea;Yang, Koon-Ho;Choi, Seong-Bong
    • Journal of Astronomy and Space Sciences
    • /
    • 제24권4호
    • /
    • pp.451-456
    • /
    • 2007
  • Data coming from devices shall be transported to a specific task to be used in a software with the most accurate time and data integrity. During this process, a potential cause for invoking structured hazard and performance degradation is dormant. In this paper, a method which can protect the data integrity from the possible data corruption when collision has happened during I/O data exchange between device and tasks is presented. Also, an example diagram of mechanism according to the method is shown and the effect, merits and demerits of the method is evaluated.