• Title/Summary/Keyword: device degradation

Search Result 474, Processing Time 0.025 seconds

Mitigation of Potential-Induced Degradation (PID) for PERC Solar Cells Using SiO2 Structure of ARC Layer (반사방지막(ARC)의 SiO2 구조에 따른 PERC 태양전지 PID 열화 완화 상관관계 연구)

  • Oh, Kyoung Suk;Park, Ji Won;Chan, Sung Il
    • Current Photovoltaic Research
    • /
    • v.8 no.4
    • /
    • pp.114-119
    • /
    • 2020
  • In this study, Mitigation of Potential-induced degradation (PID) for PERC solar cells using SiO2 Structure of ARC layer. The conventional PID test was conducted with a cell-level test based on the IEC-62804 test standard, but a copper PID test device was manufactured to increase the PID detection rate. The accelerated aging test was conducted by maintaining 96 hours with a potential difference of 1000 V at a temperature of 60℃. As a result, the PERC solar cell of SiO2-Free ARC structure decreased 22.11% compared to the initial efficiency, and the PERC solar cell of the Upper-SiO2 ARC structure decreased 30.78% of the initial efficiency and the PID reliability was not good. However, the PERC solar cell with the lower-SiO2 ARC structure reduced only 2.44%, effectively mitigating the degradation of PID. Na+ ions in the cover glass generate PID on the surface of the PERC solar cell. In order to prevent PID, the structure of SiNx and SiO2 thin films of the ARC layer is important. SiO2 thin film must be deposited on bottom of ARC layer and the surface of the PERC solar cell N-type emitter to prevent surface recombination and stacking fault defects of the PERC solar cell and mitigated PID degradation.

Experimental investigation on the degradation of SiGe LNAs under different bias conditions induced by 3 MeV proton irradiation

  • Li, Zhuoqi;Liu, Shuhuan;Ren, Xiaotang;Adekoya, Mathew Adefusika;Zhang, Jun;Liu, Shuangying
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.661-665
    • /
    • 2022
  • The 3 MeV proton irradiation effects on SiGe low noise amplifier (LNA) (NXP BGU7005) performance under different voltage supply VCC (0 V, 2.5 V) conditions were firstly experimental studied in this present work. The S parameters including S11, S22, S21, 1 dB compression point and noise figure (NF) of the test samples under different bias voltage supply were measured and compared before and after 3 MeV proton irradiation. The total proton irradiation fluence was 1 × 1015 protons/cm2. The maximum degradation quantities of the gain S21 and NF of the test samples under zero bias are measured respectively 1.6 dB and 1.2 dB. Compared with the samples under 2.5 V bias supply, the maximum degradation of S21 and NF are respectively 1.1 dB and 0.8 dB in the whole frequency band. It is noteworthy that the gain and NF of SiGe LNAs under zero-bias mode suffer enhanced degradation compared with those under normal bias supply. The key influence factors are discussed based on the correlation of the SiGe device and the LNA circuit. Different process of the ionization damage and displacement damage under zero-bias and 2.5 V bias voltage supply contributed to the degradation difference. The underlying physical mechanisms are analyzed and investigated.

Recent Progress in Surface/Interface Defect Engineering of Perovskite for Improving Stability (페로브스카이트의 표면 및 계면 결함 제어를 통한 안정성 향상 기술 경향)

  • Kim, Min
    • Journal of Adhesion and Interface
    • /
    • v.21 no.2
    • /
    • pp.41-50
    • /
    • 2020
  • Organic-inorganic metal halide perovskite has shown a great promise in photovoltaic applications because of the skyrocketing power-conversion efficiencies up to 25.2% and their potentially low production cost. However, it also has critical issue of substantial material degradation during device operation to be overcome for successful commercialization. Understanding the nature of defects and their photochemistry related to material degradation is needed. Furthermore, strategy to passivate defects in perovskite should be adopted to improve the stability of perovskite. In this article, we present predominant defects formation in perovskite that contribute to material degradations in perovskite solar cells. We then discuss how material stability can be improved through reliable defect passivation engineering.

A study on the degradation of the AC stressed MOV by using of the DLTS technique (DLTS기법에 의한 MOV소자의 교류과전경시 변화특성에 관한 연구)

  • 이동희
    • Electrical & Electronic Materials
    • /
    • v.9 no.7
    • /
    • pp.719-726
    • /
    • 1996
  • DLTS measurements were performed to study the annealing induced changes of the trap centers in MOV and to shed more light on the stability mechanism of the MOV. Two electron traps, Ec-0.26[eV] and Ec-(O.2-0.3)[eV], were observed in the unannealed samples in large quantities(7-9 X 1014[CM 3]), whereas the three electron traps Ec-0.17 [eV], Ec-0.26[eV] and Ec-(O.2-0.3)[eV] were observed far less in the annealed samples. The minima in the Ec-0.26[eV] trap density, coupled with the presented results that unannealed devices are unstable whereas 600.deg. C annealed devices are most stable, suggests that the instability of the MOV under long term electrical stressing is related to the Ec-0.26[eV] trap. This results support that the ion migration model for the device instability where the Ec-0.26[eV] defects may be the interstitial zinc or the migrating ions. The interstitial zinc originated as a result of the nonstoichiometric nature of ZnO might cause the degradation of the I-V characteristics of the MOV with long term electrical stressing.

  • PDF

Aging Mechanisms of Lithium-ion Batteries

  • Jangwhan Seok;Wontae Lee;Hyunbeom Lee;Sangbin Park;Chanyou Chung;Sunhyun Hwang;Won-Sub Yoon
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.51-66
    • /
    • 2024
  • Modern society is making numerous efforts to reduce reliance on carbon-based energy systems. A notable solution in this transition is the adoption of lithium-ion batteries (LIBs) as potent energy sources, owing to their high energy and power densities. Driven by growing environmental challenges, the application scope of LIBs has expanded from their initial prevalence in portable electronic devices to include electric vehicles (EVs) and energy storage systems (ESSs). Accordingly, LIBs must exhibit long-lasting cyclability and high energy storage capacities to facilitate prolonged device usage, thereby offering a potential alternative to conventional sources like fossil fuels. Enhancing the durability of LIBs hinges on a comprehensive understanding of the reasons behind their performance decline. Therefore, comprehending the degradation mechanism, which includes detrimental chemical and mechanical phenomena in the components of LIBs, is an essential step in resolving cycle life issues. The LIB systems presently being commercialized and developed predominantly employ graphite anode and layered oxide cathode materials. A significant portion of the degradation process in LIB systems takes place during the electrochemical reactions involving these electrodes. In this review, we explore and organize the aging mechanisms of LIBs, especially those with graphite anodes and layered oxide cathodes.

A Study on the Varistor Maintenance program in urban rail chopper type subway train (도시철도 쵸파형 전동차 배리스터(varistor) 유지보수 방안 연구)

  • Woo, Jong-Hyuk;Lee, Jong-In;Lee, Yong-Gi;Song, Jeong-Hun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1647-1653
    • /
    • 2011
  • In the case of an urban rail chopper type subway train, varistors have been installed for protecting usual electronic equipments, semiconductor devices(diodes, transistors, thyrister, etc.) communications, measuring, control device and absorbing opening & closing surge of electromagnetic valve. These varistors were steadily reduced dielectric strength as becoming superannuated. Thus there is a problem that reacts more sensitive at the same surge in the general control operation. On existing maintenance, there is not specific standard to replace superannuated varistor. So when maintaining chopper type subway train, all varistors or old varistors that workers checked a discoloration & crack with the naked eye and noticed degradation smell by deterioration are replaced. This study suggests detail standards for judgement that varistors are good or bad chopper type subway train, and it draw a efficient maintenance which efficient maintenance can check more easy the degradation properties variation.

  • PDF

CFD Prediction of Cavity Drag at Transonic and Low Supersonic Speeds

  • 김희동;구병수;우선훈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.18-18
    • /
    • 2000
  • In the high lift devices specifications for surface smoothness requirements, as manufacturing tolerances, arise out of aerodynamic consideration to minimize drag. True optimization of tolerances is a multi-disciplinary problem involving fluid mechanics, device performance, manufacturing philosophy and life cycle costing. One of the reasons for degradation of wetted surface is discrete roughness as a consequence of manufacturing defects, collectively termed as one of the excrescences effect. Usually, excrescence drag arising out of discrete roughness is of considerable lower order of magnitude as compared to the total drag of the flight bodies. Nor was there adequate predicting tool to account for the extent of drag degradation. Estimation of excrescence drag remained as a state-of-the art based on experimental results.

  • PDF

Nonlinear quantization and modified dot diffusion for color printing (칼라 프린팅을 위한 비선형적 양자화 및 변형된 점 확산 방법)

  • 이채수;김경만;이응주;박양우;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.88-95
    • /
    • 1996
  • Recently, the use of color data is growing fast in the area of image processing. To represent full resolution image on a limited output device, image has to be quantized an dithered. So, many dithering techniques are foundd in the printing. In this paper, we propose nonlinear quantization to consider the overlapping phenomena of neighboring printing dots and modified dot diffusion algorithm to compensate the color degradation produced in the quantization process. In the modified dot-diffusion quantization errors to be diffused are adjusted to improve both image blur and color change produced in the dot diffusion. The printed image obtained by the proposed color dithering method has higher visual quality an less color degradation than the images by conventional printing method.

  • PDF

A Study on Electrical Fire of Small Ventilators due to Aged Degradation (경년열화에 의한 소형 환풍기의 전기화재에 관한 연구)

  • Lim, Jong Yong;Lee, Sung Ill
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.22-26
    • /
    • 2016
  • "Always-on" small ventilators are likely to experience thermal decomposition of insulating material due to thermal, electrical, mechanical and environmental influences, and lose insulating properties by the process of oxidation and physiochemical reaction. This increases the risk of electrical fire because of layer short, short circuit, overload and Plastics are usually used to make ventilator and ventilator enclosures since they make less noise and are cheaper. Although more preferred than iron, plastic, a combustible material, has a higher risk of fire. In this study, several experiments were carried out to find out how RCD(Residual Current Protective Device) and Thermal fuses, which are electric motor protection devices, work and what needs to be done to reduce the risk of fire.

Dependence of Self-heating Effect on Width/Length Dimension in p-type Polycrystalline Silicon Thin Film Transistors

  • Lee, Seok-Woo;Kim, Young-Joo;Park, Soo-Jeong;Kang, Ho-Chul;Kim, Chang-Yeon;Kim, Chang-Dong;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.505-508
    • /
    • 2006
  • Self-heating induced device degradation and its width/length (W/L) dimension dependence were studied in p-type polycrystalline silicon (poly-Si) thin film transistors (TFTs). Negative channel conductance was observed under high power region of output curve, which was mainly caused by hole trapping into gate oxide and also by trap state generation by self-heating effect. Self-heating effect became aggravated as W/L ratio was increased, which was understood by the differences in heat dissipation capability. By reducing applied power density normalized to TFT area, self-heating induced degradation could be reduced.

  • PDF