DOI QR코드

DOI QR Code

Experimental investigation on the degradation of SiGe LNAs under different bias conditions induced by 3 MeV proton irradiation

  • Li, Zhuoqi (Department of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Liu, Shuhuan (Department of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Ren, Xiaotang (Proton Accelerator Laboratory, Peking University) ;
  • Adekoya, Mathew Adefusika (Department of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Zhang, Jun (Department of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Liu, Shuangying (Department of Nuclear Science and Technology, Xi'an Jiaotong University)
  • Received : 2021.03.15
  • Accepted : 2021.08.04
  • Published : 2022.02.25

Abstract

The 3 MeV proton irradiation effects on SiGe low noise amplifier (LNA) (NXP BGU7005) performance under different voltage supply VCC (0 V, 2.5 V) conditions were firstly experimental studied in this present work. The S parameters including S11, S22, S21, 1 dB compression point and noise figure (NF) of the test samples under different bias voltage supply were measured and compared before and after 3 MeV proton irradiation. The total proton irradiation fluence was 1 × 1015 protons/cm2. The maximum degradation quantities of the gain S21 and NF of the test samples under zero bias are measured respectively 1.6 dB and 1.2 dB. Compared with the samples under 2.5 V bias supply, the maximum degradation of S21 and NF are respectively 1.1 dB and 0.8 dB in the whole frequency band. It is noteworthy that the gain and NF of SiGe LNAs under zero-bias mode suffer enhanced degradation compared with those under normal bias supply. The key influence factors are discussed based on the correlation of the SiGe device and the LNA circuit. Different process of the ionization damage and displacement damage under zero-bias and 2.5 V bias voltage supply contributed to the degradation difference. The underlying physical mechanisms are analyzed and investigated.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (NSFC) under grants NO. 12075180 and 11575139. The authors would like to thank the Peking University Proton Accelerator Laboratory team.

References

  1. N. Logan, J.M. Noras, Advantages of bipolar SiGe over silicon CMOS for a 2.1 GHz LNA, in: 2009 9th Int. Conf. Telecommun. Mod. Satell. Cable Broadcast. Serv., 2009, pp. 29-31, https://doi.org/10.1109/SKS.2009.5339497.
  2. W. Lambrechts, S. Sinha, A review on Si, SiGe, GaN, SiC, InP and GaAs as enabling technologies in EW and space, in: SiGe-Based Re-eng. Electron. Warf. Subsystems, Springer International Publishing, Cham, 2017, pp. 301-329, https://doi.org/10.1007/978-3-319-47403-8_10.
  3. J.D. Cressler, On the potential of SiGe HBTs for extreme environment electronics, Proc. IEEE 93 (2005) 1559-1582, https://doi.org/10.1109/JPROC.2005.852225.
  4. J.D. Cressler, Silicon-germanium as an enabling technology for extreme environment electronics, IEEE Trans. Device Mater. Reliab. 10 (2010) 437-448, https://doi.org/10.1109/TDMR.2010.2050691.
  5. J.D. Cressler, Radiation effects in SiGe technology, IEEE Trans. Nucl. Sci. 60 (2013) 1992-2014, https://doi.org/10.1109/TNS.2013.2248167.
  6. J.D. Cressler, Device-to-circuit interactions in SiGe technology: challenges and opportunities, in: 2014 IEEE BipolarBiCMOS Circuits Technol. Meet. BCTM, 2014, pp. 45-55, https://doi.org/10.1109/BCTM.2014.6981283.
  7. A.S. Youssouf, M.H. Habaebi, S.N. Ibrahim, N.F. Hasbullah, Gain investigation for commercial GaAs and SiGe HBT LNA's under electron irradiation, in: 2016 IEEE Stud. Conf. Res. Dev. SCOReD, 2016, pp. 1-5, https://doi.org/10.1109/SCORED.2016.7810094.
  8. F.S. Minko, T. Stander, Effect of TID electronradiation on SiGe BiCMOS LNAs at V-band, Microelectron. Reliab. 112 (2020) 113750, https://doi.org/10.1016/j.microrel.2020.113750.
  9. D.C. Howard, P.K. Saha, S. Shankar, R.M. Diestelhorst, T.D. England, N.E. Lourenco, E. Kenyon, J.D. Cressler, An 8-16 GHz SiGe low noise amplifier with performance tuning capability for mitigation of radiation-induced performance loss, IEEE Trans. Nucl. Sci. 59 (2012) 2837-2846, https://doi.org/10.1109/TNS.2012.2224132.
  10. Wei-Min Lance Kuo, Yuan Lu, B.A. Floyd, B.M. Haugerud, A.K. Sutton, R. Krithivasan, J.D. Cressler, B.P. Gaucher, P.W. Marshall, R.A. Reed, G. Freeman, Proton radiation response of monolithic Millimeter-wave transceiver building blocks implemented in 200 GHz SiGe technology, IEEE Trans. Nucl. Sci. 51 (2004) 3781-3787, https://doi.org/10.1109/TNS.2004.839215.
  11. N.A. Dodds, M.J. Martinez, P.E. Dodd, M.R. Shaneyfelt, F.W. Sexton, J.D. Black, D.S. Lee, S.E. Swanson, B.L. Bhuva, K.M. Warren, R.A. Reed, J. Trippe, B.D. Sierawski, R.A. Weller, N. Mahatme, N.J. Gaspard, T. Assis, R. Austin, S.L. Weeden-Wright, L.W. Massengill, G. Swift, M. Wirthlin, M. Cannon, R. Liu, L. Chen, A.T. Kelly, P.W. Marshall, M. Trinczek, E.W. Blackmore, S. Wen, R. Wong, B. Narasimham, J.A. Pellish, H. Puchner, The contribution of low-energy protons to the total on-orbit SEU rate, IEEE Trans. Nucl. Sci. 62 (2015) 2440-2451, https://doi.org/10.1109/TNS.2015.2486763.
  12. Q. Yu, L. Luo, M. Tang, Y. Sun, Z. Wei, Z. Li, M. Zhu, Experimental study of 0.18mm and 65nm SRAM SEUs induced by heavy ions, high energy protons and low energy protons on orbits, in: 2015 15th Eur. Conf. Radiat. Its Eff. Compon. Syst. RADECS, 2015, pp. 1-5, https://doi.org/10.1109/RADECS.2015.7365612.
  13. O. Kegege, M. Barlow, A. Mantooth, R. Ulrich, Mission optimization and tradeoffs of using SiGe based electronics for a cryogenic environment rover mission, in: 2010 IEEE Aerosp. Conf., 2010, pp. 1-6, https://doi.org/10.1109/AERO.2010.5446757.
  14. W. Lambrechts, S. Sinha, SiGe for radiation hardening: spearheading electronic warfare in space, in: SiGe-Based Re-eng. Electron. Warf. Subsystems, Springer International Publishing, Cham, 2017, pp. 201-233, https://doi.org/10.1007/978-3-319-47403-8_7.
  15. K. Clark, G. Tan-Wang, J. Boldt, R. Greeley, I. Jun, R. Lock, J. Ludwinski, R. Pappalardo, T.V. Houten, T. Yan, Return to europa: overview of the jupiter europa orbiter mission, in: 2009 IEEE Aerosp. Conf., 2009, pp. 1-20, https://doi.org/10.1109/AERO.2009.4839315.
  16. I. Song, Design of SiGe BICMOS RF Building Blocks for Extreme-Environment Applications, Georgia Institute of Technology, 2016.
  17. P.C. Adell, J. Yager, Z. Pannell, J. Shelton, M.M. Mojarradi, B. Blalock, G. Allen, R. Some, Radiation hardening of an SiGe BiCMOS wilkinson ADC for distributed motor controller application, IEEE Trans. Nucl. Sci. 61 (2014) 1236-1242, https://doi.org/10.1109/TNS.2014.2323975.
  18. T. England, C. Chatterjee, N. Lourenco, S. Finn, L. Najafizadeh, S. Phillips, E. Kenyon, R. Diestelhorst, J. Cressler, Cold-capable, radiation-hardened SiGe BiCMOS wireline transceivers, IEEE Aero. Electron. Syst. Mag. 29 (2014) 32-41, https://doi.org/10.1109/MAES.2014.6805364.
  19. Z.E. Fleetwood, E.W. Kenyon, N.E. Lourenco, S. Jain, E.X. Zhang, T.D. England, J.D. Cressler, R.D. Schrimpf, D.M. Fleetwood, Advanced SiGe BiCMOS technology for multi-mrad electronic systems, IEEE Trans. Device Mater. Reliab. 14 (2014) 844-848, https://doi.org/10.1109/TDMR.2014.2331980.
  20. Y. Sun, Z. Liu, J. Fu, X. Li, Y. Shi, Investigation of total dose effects in SiGe HBTs under different exposure conditions, Radiat. Phys. Chem. 151 (2018) 84-89, https://doi.org/10.1016/j.radphyschem.2018.05.019.
  21. Y. Sun, J. Fu, J. Xu, Y. Wang, W. Zhou, W. Zhang, J. Cui, G. Li, Z. Liu, Impact of bias conditions on performance degradation in SiGe HBTs irradiated by 10MeV Br ion, Microelectron. Reliab. 54 (2014) 2728-2734, https://doi.org/10.1016/j.microrel.2014.08.010.
  22. J. Zhang, Q. Guo, H.-X. Guo, W. Lu, C. He, X. Wang, P. Li, L. Wen, Investigation of enhanced low dose rate sensitivity in SiGe HBTs by 60Co g irradiation under different biases, Microelectron, Reliab. 84 (2018) 105-111, https://doi.org/10.1016/j.microrel.2018.03.007.
  23. S. Zhang, J.D. Cressler, G. Niu, C.J. Marshall, P.W. Marshall, H.S. Kim, R.A. Reed, M.J. Palmer, A.J. Joseph, D.L. Harame, The effects of operating bias conditions on the proton tolerance of SiGe HBTs, Solid State Electron. 47 (2003) 1729-1734, https://doi.org/10.1016/S0038-1101(03)00131-X.
  24. A.B. Smolders, H. Gul, E. v d Heijden, P. Gamand, M. Geurts, BiCMOS high-performance ICs: from DC to mm-wave, in: 2009 IEEE BipolarBiCMOS Circuits Technol. Meet., 2009, pp. 115-122, https://doi.org/10.1109/BIPOL.2009.5314130.
  25. D.C. Howard, X. Li, J.D. Cressler, A low power 1.8-2.6 dB noise figure, SiGe HBT wideband LNA for multiband wireless applications, in: 2009 IEEE BipolarBiCMOS Circuits Technol. Meet., 2009, pp. 55-58, https://doi.org/10.1109/BIPOL.2009.5314152.
  26. B. Habeenzu, TID Induced Small Signal Model Variation in CMOS and SiGe BiCMOS, University of Pretoria, 2019.
  27. J. Cressler, in: Silicon-Germanium Heterojunction Bipolar Transistor, 2001, pp. 69-84, https://doi.org/10.1007/978-1-4757-3318-1_4.
  28. J. Alvin, S. Ananth, P. Shrinivas, Z. Mike, J. Vibhor, L. Chaojiang, A. James, High-resistivity SiGe BiCMOS for switch+LNA integration for WiFi front-end IC applications, in: 2016 13th IEEE Int. Conf. Solid-State Integr. Circuit Technol. ICSICT, 2016, pp. 57-60, https://doi.org/10.1109/ICSICT.2016.7998838.
  29. Guofu Niu, J.D. Cressler, Shiming Zhang, A. Joseph, D. Harame, Noise-gain tradeoff in RF SiGe HBTs, in: 2001 Top. Meet. Silicon Monolith. Integr. Circuits RF Syst. Dig. Pap. IEEE Cat No01EX496, 2001, pp. 187-191, https://doi.org/10.1109/SMIC.2001.942363.
  30. H. Xie, Z. Lu, W. Zhang, P. Shen, C. Ding, Y. You, B. Sun, A dual-band SiGe HBT low noise amplifier, in: 2010 10th IEEE Int. Conf. Solid-State Integr. Circuit Technol., 2010, pp. 668-670, https://doi.org/10.1109/ICSICT.2010.5667287.
  31. Z. Yang, Niehai, W. Han, A high-linearity S-band SiGe HBT low-noise amplifier design, in: 2013 Int. Workshop Microw. Millim. Wave Circuits Syst. Technol., 2013, pp. 308-311, https://doi.org/10.1109/MMWCST.2013.6814639.
  32. A.P.G. Prakash, T.M. Pradeep, V.N. Hegde, N. Pushpa, P.K. Bajpai, S.P. Patel, T. Trivedi, K.G. Bhushan, Comparison of effect of 5 MeV proton and Co-60 gamma irradiation on silicon NPN rf power transistors and N-channel depletion MOSFETs, Radiat. Eff. Defect Solid 172 (2017) 952-963, https://doi.org/10.1080/10420150.2017.1421189.
  33. Shiming Zhang, Guofu Niu, J.D. Cressler, S.D. Clark, D.C. Ahlgren, The effects of proton irradiation on the RF performance of SiGe HBTs, IEEE Trans. Nucl. Sci. 46 (1999) 1716-1721, https://doi.org/10.1109/23.819144.
  34. Yuan Lu, J.D. Cressler, R. Krithivasan, Ying Li, R.A. Reed, P.W. Marshall, C. Polar, G. Freeman, D. Ahlgren, Proton tolerance of third-generation, 0.12/spl mu/m 185 GHz SiGe HBTs, IEEE Trans. Nucl. Sci. 50 (2003) 1811-1815, https://doi.org/10.1109/TNS.2003.820737.
  35. S.T. Pantelides, Z.-Y. Lu, C. Nicklaw, T. Bakos, S.N. Rashkeev, D.M. Fleetwood, R.D. Schrimpf, The E' center and oxygen vacancies in SiO2, J. Non-Cryst. Solids 354 (2008) 217-223, https://doi.org/10.1016/j.jnoncrysol.2007.08.080.
  36. D.M. Fleetwood, S.T. Pantelides, S.N. Rashkeev, R.D. Schrimpf, Defect generation by hydrogen at the Si-SiO2 interface, Phys. Rev. Lett. 87 (2001) 165506. https://doi.org/10.1103/physrevlett.87.165506