• Title/Summary/Keyword: device characterization

Search Result 472, Processing Time 0.03 seconds

Switching Characteristics Enhancement of PT Type Power Diode using Proton Irradiation Technique (양성자 주입기술을 이용한 PT형 전력다이오드의 스위칭 특성 향상)

  • Kim Byoung-Gil;Choi Sung-Hwan;Lee Jong-Hun;Bae Young-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.216-221
    • /
    • 2006
  • Lifetime control technique by proton implantation has become an useful tool for production of modern power devices. In this work, punch-through type diodes were irradiated with protons for the high speed power diode fabrication. Proton irradiation which was capable of controlling carrier's lifetime locally was carried out at the various energy and dose conditions. Characterization of the device was performed by current-voltage, capacitance-voltage and reverse recovery time measurement. We obtained enhanced reverse recovery time characteristics which was about $45\;\%$ of original device reverse recovery time and about $73\;\%$ of electron irradiated device reverse recovery time. The measurement results showed that proton irradiation technique was able to effectively reduce minority carrier lifetime without degrading the other characteristics.

Fabrication and Characterization of Self-Aligned Recessed Channel SOI NMOSFEGs

  • Lee, Jong-Ho
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.106-110
    • /
    • 1997
  • A new SOI NMOSFET with a 'LOCOS-like' shape self-aligned polysilicon gate formed on the recessed channel region has been fabricated by a mix-and-match technology. For the first time, a new scheme for implementing self-alignment in both source/drain and gate structure in recessed channel device fabrication was tried. Symmetric source/drain doping profile was obtained and highly symmetric electrical characteristics were observed. Drain current measured from 0.3${\mu}{\textrm}{m}$ SOI devices with V\ulcorner of 0.77V and Tox=7.6nm is 360$mutextrm{A}$/${\mu}{\textrm}{m}$ at V\ulcorner\ulcorner=3.5V and V\ulcorner=2.5V. Improved breakdown characteristics were obtained and the BV\ulcorner\ulcorner\ulcorner(the drain voltage for 1 nA/${\mu}{\textrm}{m}$ of I\ulcorner at V=\ulcorner\ulcorner=0V) of the device with L\ulcorner\ulcorner=0.3${\mu}{\textrm}{m}$ under the floating body condition was as high as 3.7 V. Problems for the new scheme are also addressed and more advanced device structure based on the proposed scheme is proposed to solve the problems.

  • PDF

The Characterization of SC-PMOSFET with $P^+$ Polysilicon Gates ($P^+$ 다결정 실리콘을 사용한 SC-PMOSFET의 특성)

  • Jeong, Soung-Ik;Park, Jong-Tae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.98-104
    • /
    • 1990
  • A study of the operation of surface and buried mode PMOSFET's is condusted. Using device with different channel length and channel implant dosage, threshold voltage lowering, transcon-diuctance and subthreshold characteristics of surface mode PMOFET are compared with those of buried mode MPOSFET. From the results, the surface channel device were more resistant to short channel effect than the buried channel device.

  • PDF

Electrical Characterization of Para-Sexiphenyl Organic Electroluminescenct Devices (Para-sexiphenyl 유기 EL 소자의 전기적 특성)

  • Lee, Yonq-Soo;Park, Jae-Hoon;Choi, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1739-1741
    • /
    • 2000
  • DC current density-voltage and impedance spectroscopy studies have been performed on indium-tin-oxide(ITO)/para-sexiphenyl(6p)/aluminium organic electroluminescent device. The device exhibited a blue color emission, The turn-on voltage of the device is observed at 5V from the current density-voltage measurements. The impedance spectroscopy measurements show that a resonance frequency shift with applied DC bias is observed and a single semi-circle Cole-Cole plot is confirmed. The bias-dependent bulk resistance and bias-independent bulk capacitance is observed.

  • PDF

Fabrication and Characterization of the Silicon Vertical Hall Devices (실리콘 종형 홀 소자의 제조 및 그 특성)

  • 류지구;최세곤
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.3
    • /
    • pp.72-78
    • /
    • 1992
  • The Silicon vertical Hall devices are fabricated using standard bipolar process and characterized in terms of the Hall voltage, sensitivities, and offset voltage. The Hall voltage and sensitivity of the devices showed good linearity with respect to the magnetic flux density and reverse supply voltage Vr. The sensitivity of device with P$^{+}$ isolation dam has been increased up to 1.2 times compared to that of device without the dam. With the condition of V$_{r}$=-5.0[V], B=0.4[T] and I$_{sup}$=1.0[mA], the Hall voltage and sensitivity of the device with P$^{+}$ isolation dam were about 29[mV] and 74[V/AT], respectively. These vertical Hall devices can be used as the adjustable magnetic fields sensor.

  • PDF

Characterization of SWCNT Field Effect Transistor via Edison Simulation

  • Piao, Mingxing;Lee, Sang-Jin;Na, In-Yeob
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.260-263
    • /
    • 2013
  • A semiconducting single-walled carbon nanotube (SWCNT) field-effect transistor (FET) in a top-gate model was constructed. The effect of different high-${\kappa}$ dielectric materials ($Al_2O_3$, $HfO_2$ and HfSiON) and various temperatures with a wide range from 50K to 500K on the performance of such nominal device were investigated. Several key device parameters including the on/off ratio of the current, transconductance ($g_m$), subthreshold swing, and carrier mobility were used to evaluate the device performance. The simulated results fit well with the experiment results previously published.

  • PDF

Improvement of Turn-off Switching Characteristics of the PT-IGBT by Proton Irradiation (양성자 조사법에 의한 PI-IGBT의 Turn-off 스위칭 특성 개선)

  • Choi, Sung-Hwan;Lee, Yong-Hyun;Lee, Jong-Hun;Bae, Young-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.22-23
    • /
    • 2006
  • Proton irradiation technology was used for improvement of switching characteristics of the PT-IGBT. Proton irradiation was carried out at 5.56 MeV energy with $1{\times}10^{12}/cm^2$ doze from the back side of the wafer. Characterization of the device was performed by I-V, breakdown voltage, threshold voltage, and turn-off delay time measurement. For irradiated device by 5.56 MeV energy, the breakdown voltage and the threshold voltage were 730 V and 6.5~6.6 V, respectively. The turn-off time has been reduced to 170 ns, which was original $6\;{\mu}s$ for the un-irradiated device.

  • PDF

Deposition of Piezoelectric PZT(53/47) Film by Metalorganic Decomposition for Micro electro mechanical Device (Microelectromechnical system 소자 제작을 위한 유기금속분해법에 의한 압전성 PZT(53/47)박막의 증착)

  • 윤영수;정형진;신영화
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.6
    • /
    • pp.458-464
    • /
    • 1998
  • This paper gives characterization of substrate and PZT(53/47) thin film deposited by metalorganic decomposition, which is concerned in deposition process and device fabrication process, to fabricate micro electro mechanical system (MEMS) device with piezoelectric material. The PZT thin films deposited by MOD at 700^{\circ}C$ for 30 minutes had a polycrystallinity, that is, no substrate dependence, while different interface were developed depending on the bottom electrodes. Such a structural variation could influence on not only the properties of the PZT film but also etching process for fabricating MEMS devices. Therefore the electrode structure is a very important factor in the deposition of the PZT film during etching process by HF acid for MEMS device with piezoelectric material. Piezoelectric coefficients of the PZT films on the different substrates were 40 and 80 pm/V at an applied voltage of 4V. Based in these results, it was possible for deposition of the PZT film by MOD to apply MEMS device fabrication process based on piezoelectricity after selection of proper bottom electrode.

  • PDF

Characterization of electrophoretically deposited low voltage phosphors mixed with $In_2O_3$ conducting powders for field emission display

  • Seo, D.S.;Song, B.G.;Kim, C.O.;Hong, J.P.;Jin, Y.W.;Cha, S.N.;Lee, N.S.;Jung, J.E.;Kim, J.M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.145-146
    • /
    • 2000
  • Primary emphasis was placed on the electrophoretic deposition of low voltage phosphor to indium-tin oxide-coated glass for the application of field emission display. The phosphor deposited by various parameters, such as deposition time and applied voltages was examined in detail. In addition, a comparison was made by analyzing luminance properties of the phosphor mixed with and without conducting $In_2O_3$ powder of less than 1um size. The measurement was performed as a function of $In_2O_3$ concentration from 3% to 15% by weight. The enhanced impact of indium powder mixing on the phosphor was clearly demonstrated by aging performance curve at 1000V excitation voltages with a current density of $1\;mA/cm^2$

  • PDF

Characterization of Wavelength Effect on Photovoltaic Property of Poly-Si Solar Cell Using Photoconductive Atomic Force Microscopy (PC-AFM)

  • Heo, Jinhee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.160-163
    • /
    • 2013
  • We investigated the effect of light intensity and wavelength of a solar cell device by using photoconductive atomic force microscopy (PC-AFM). The $POCl_3$ diffusion doping process was used to produce a p-n junction solar cell device based on a Poly-Si wafer and the electrical properties of prepared solar cells were measured using a solar cell simulator system. The measured open circuit voltage ($V_{oc}$) is 0.59 V and the short circuit current ($I_{sc}$) is 48.5 mA. Also, the values of the fill factors and efficiencies of the devices are 0.7% and approximately 13.6%, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, was used for direct measurements of photoelectric characteristics in local instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics were observed. Results obtained through PC-AFM were compared with the electric/optical characteristics data obtained through a solar simulator. The voltage ($V_{PC-AFM}$) at which the current was 0 A in the I-V characteristic curves increased sharply up to 1.8 $mW/cm^2$, peaking and slowly falling as light intensity increased. Here, $V_{PC-AFM}$ at 1.8 $mW/cm^2$ was 0.29 V, which corresponds to 59% of the average $V_{oc}$ value, as measured with the solar simulator. Also, while light wavelength was increased from 300 nm to 1,100 nm, the external quantum efficiency (EQE) and results from PC-AFM showed similar trends at the macro scale, but returned different results in several sections, indicating the need for detailed analysis and improvement in the future.