• Title/Summary/Keyword: deviation of distance

Search Result 442, Processing Time 0.024 seconds

Tidal and Sub-tidal Current Characteristics in the Central part of Chunsu Bay, Yellow Sea, Korea during the Summer Season (서해 천수만 중앙부의 하계 조류/비조류 특성)

  • Jung, Kwang Young;Ro, Young Jae;Kim, Baek Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.2
    • /
    • pp.53-64
    • /
    • 2013
  • This study analyzed the ADCP records along with wind by KMA and discharge records at Seosan A-, B-district tide embankment by KRC for 33 days obtained in the Chunsu Bay, Yellow Sea, Korea spanning from July 29 to August 30, 2010. Various analyses include descriptive statistics, harmonic analysis of tidal constituents, spectra and coherence, complex correlation, progressive vector diagram and cumulative curves to understand the tidal and sub-tidal current characteristics caused by local wind and discharge effect. Observed current speed ranges from -30 to 40 (cm/sec), with standard deviation from 1.7 (cm/sec) at bottom to 18.7 (cm/sec) at surface. According to the harmonic analysis results, the tidal current direction show NNW-SSE. The magnitudes of semi-major axes range from 9.4 to 14.8 (cm/sec) for M2 harmonic constituent and from 4.4 to 7.0 (cm/sec) for S2, respectively. And the magnitudes of semi-minor axes range from 0.1 to 0.5 (cm/sec) for M2 and from 0.4 to 1.4 (cm/sec) for S2, respectively. In the spectral analysis results in the frequency domain, we found 3~6 significant spectral peaks for band-passed wind and residual current of all depth. These peak periods represent various periodicities ranging from 2 to 8 (days). In the coherency analysis results between band-passed wind and residual current of all depth, several significant coherencies could be resolved in 3~5 periodicities within 2.8 (days). Highest coherency peak occurred at 4.6 (day) with 1.2-day phase lag of discharge to band-passed residual current. The progressive vector of wind and residual current travelled to northward at all layers, and the travel distance at middle layer was greater than surface layer distance. The Northward residual current was caused by a seasonal southern wind, and the density-driven current formed by fresh water input effected southward residual current. The sub-tidal current characteristics is determined by seasonal wind force and fresh water inflow in the Chunsu Bay, Yellow Sea, Korea.

Validation of GCOM-W1/AMSR2 Sea Surface Temperature and Error Characteristics in the Northwest Pacific (북서태평양 GCOM-W1/AMSR2 해수면온도 검증 및 오차 특성)

  • Kim, Hee-Young;Park, Kyung-Ae;Woo, Hye-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.721-732
    • /
    • 2016
  • The accuracy and error characteristics of microwave Sea Surface Temperature (SST) measurements in the Northwest Pacific were analyzed by utilizing 162,264 collocated matchup data between GCOM-W1/AMSR2 data and oceanic in-situ temperature measurements from July 2012 to August 2016. The AMSR2 SST measurements had a Root-Mean-Square (RMS) error of about $0.63^{\circ}C$ and a bias error of about $0.05^{\circ}C$. The SST differences between AMSR2 and in-situ measurements were caused by various factors, such as wind speed, SST, distance from the coast, and the thermal front. The AMSR2 SST data showed an error due to the diurnal effect, which was much higher than the in-situ temperature measurements at low wind speed (<6 m/s) during the daytime. In addition, the RMS error tended to be large in the winter because the emissivity of the sea surface was increased by high wind speeds and it could induce positive deviation in the SST retrieval. Low sensitivity at colder temperature and land contamination also affected an increase in the error of AMSR2 SST. An analysis of the effect of the thermal front on satellite SST error indicated that SST error increased as the magnitude of the spatial gradient of the SST increased and the distance from the front decreased. The purpose of this study was to provide a basis for further research applying microwave SST in the Northwest Pacific. In addition, the results suggested that analyzing the errors related to the environmental factors in the study area must precede any further analysis in order to obtain more accurate satellite SST measurements.

A Study on the Optimum Field Condition for the Performance of Rice Transplanter (수도이앙기(水稻移秧機)의 이앙작업(移秧作業)을 위한 적정포장조건(適正圃場條件)에 관한 연구(硏究))

  • Kim, Tai-Kyu;Choi, Kyu-Hong
    • Journal of Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.39-47
    • /
    • 1981
  • For purpose of investigation the proper paddy field condition in performance of rice transplanter according to the various elapsed times (0.5, 1, 1.5, 2 days) after puddling and plowing (12, 15, 18 cm depth), this experiment was carried out on the paddy field located in Chil Am Dong, Jin Ju City, from April to May in 1980. The results are summarized as follows; 1. The practical working power for the elapsed time 0.5 days and plowing depth 18cm was about 0.8 ps, which was the highest among the plots, so the power out-put(2.5~3.5 p.s) of these engines are considered to be enough for the transplanting under these field conditions. 2. The percentage of slip increased proportional1y to the plowing depth and decreased proportionally to the elapsed time after puddling, and the highest and lowest percentages of slip were 42.5% in elapsed time 0.5 days, plowing depth 18 cm, and 26.5% in elapsed time 2 days, plowing depth 12 cm, respectively. 3. In the plot of elapsed time 2 days and plowing depth 12 cm, the planting distance was 13.9 cm, which was closed to the proper planting distance 14 cm. 4. The percentage of missing hill was lowest(1.5%) in the plot of elapsed time 2 days and plowing depth 12 cm. 5. The planted depth in the plot of the elapsed time 2 days and plowing depth 15 cm was 2. 95 cm, which was closed to the proper planting depth 3 cm. 6. The angle of planting postures in the plot of elapsed time 2 days and plowing depth 12 cm was $89^{\circ}$, which was closed to the desirable posture angle $90^{\circ}$. 7. The deviation from the straight transplanting line was lowest in the plot of the elapsed time 2 days and plowing depth 12 cm. 8. From the results above mentioned, it is recommended that the field condition under the elapsed time 2 days and plowing depth 12 cm is the most favorable one for the working performance of rice thansplanter.

  • PDF

Performance Evaluation of Monitoring System for Sargassum horneri Using GOCI-II: Focusing on the Results of Removing False Detection in the Yellow Sea and East China Sea (GOCI-II 기반 괭생이모자반 모니터링 시스템 성능 평가: 황해 및 동중국해 해역 오탐지 제거 결과를 중심으로)

  • Han-bit Lee;Ju-Eun Kim;Moon-Seon Kim;Dong-Su Kim;Seung-Hwan Min;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1615-1633
    • /
    • 2023
  • Sargassum horneri is one of the floating algae in the sea, which breeds in large quantities in the Yellow Sea and East China Sea and then flows into the coast of Republic of Korea, causing various problems such as destroying the environment and damaging fish farms. In order to effectively prevent damage and preserve the coastal environment, the development of Sargassum horneri detection algorithms using satellite-based remote sensing technology has been actively developed. However, incorrect detection information causes an increase in the moving distance of ships collecting Sargassum horneri and confusion in the response of related local governments or institutions,so it is very important to minimize false detections when producing Sargassum horneri spatial information. This study applied technology to automatically remove false detection results using the GOCI-II-based Sargassum horneri detection algorithm of the National Ocean Satellite Center (NOSC) of the Korea Hydrographic and Oceanography Agency (KHOA). Based on the results of analyzing the causes of major false detection results, it includes a process of removing linear and sporadic false detections and green algae that occurs in large quantities along the coast of China in spring and summer by considering them as false detections. The technology to automatically remove false detection was applied to the dates when Sargassum horneri occurred from February 24 to June 25, 2022. Visual assessment results were generated using mid-resolution satellite images, qualitative and quantitative evaluations were performed. Linear false detection results were completely removed, and most of the sporadic and green algae false detection results that affected the distribution were removed. Even after the automatic false detection removal process, it was possible to confirm the distribution area of Sargassum horneri compared to the visual assessment results, and the accuracy and precision calculated using the binary classification model averaged 97.73% and 95.4%, respectively. Recall value was very low at 29.03%, which is presumed to be due to the effect of Sargassum horneri movement due to the observation time discrepancy between GOCI-II and mid-resolution satellite images, differences in spatial resolution, location deviation by orthocorrection, and cloud masking. The results of this study's removal of false detections of Sargassum horneri can determine the spatial distribution status in near real-time, but there are limitations in accurately estimating biomass. Therefore, continuous research on upgrading the Sargassum horneri monitoring system must be conducted to use it as data for establishing future Sargassum horneri response plans.

A study on the search and selection processes of targets presented on the CRT display (컴퓨터 모니터에 제시된 표적의 탐색과 선택과정에 관한 연구)

  • 이재식;신현정;도경수
    • Korean Journal of Cognitive Science
    • /
    • v.11 no.2
    • /
    • pp.37-51
    • /
    • 2000
  • The present study compared computer users target-selection response patterns when the targets were varied in terms of their relative location and distance from the current position of the cursor. In Experiment 1, where the mouse was used as an input device, the effects of different directions and distances of simple target(small rectangle) on target-selection response were investigated. The results of Experiment 1 can be summarized as follows: (1) Overshooting was more frequent than either undershooting or correct movement and (2) this tendency was more prominent when the targets were presented in the oblique direction or in farther location from the current cursor position. (3) Although the overshooting and undershooting were more frequent in the oblique direction, the degree of deviation was larger in horizontal and vertical direction. (4) Time spent in moving the mouse rather than that spent in planning, calibrating or clicking was found to be the most critical factor in determining total response time. In Experiment 2, effects of the font size and line-height of the target on target-selection response were compared with regard to two types of input devices(keyboard vs. mouse). The results are as follows: (1) Mouse generally yielded shorter target-selection time than keyboard. but this tendency was reversed when the targets were presented in horizontal and vertical directions. (2) In general, target-selection time was the longest in the condition of font size of 10 and line-height of 100%, and the shortest in the condition of font size of 12 and line-height of 150%. (3) When keyboard was used as the input device, target-selection time was shortest in the 150% line-height condition, whereas in the mouse condition, target-selection time tended to be increased as the line-height increased. which resulted in the significant interaction effect between input device and line-height. Finally, several issues relating to human-computer interaction were discussed based on the results of the present study.

  • PDF

The Comparasion of the Dynamic Stereoacuity with Two-Rods Test and Three-Rods Test (이간계와 삼간계를 이용한 동적 입체시의 비교)

  • Shim, Hyun-Suk;Kim, Sang-Moon;Kim, Sang-Hyun;Kim, Young-Cheong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.377-384
    • /
    • 2015
  • Purpose: On this study, we measured and compared the dynamic stereoacuity by two-rods test (Howard-Dolman Test) and three-rods test. And we analyzed the correlation between PD and refractive error with dynamic stereoacuity. Methods: Dynamic stereoacuity of two-rods test and three-rods test at 2.5 m distance for 93 adults 93 (50 males, 43 females), mean age of $21.27{\pm}2.32$ (19~32) years old, were measured 5 times for two tests. Results: The mean of dynamic stereoacuity measured by two-rods test and three-rods test were $29.91{\pm}23.03sec$ of arc and $23.75{\pm}21.65sec$ of arc for total subjects, respectively. The mean of male and female were $36{\pm}22.38sec$ of arc and $22.28{\pm}23.79$, respectively. Three-rods test showed better dynamic stereoacuity than two-rods test, but there was no statistically significant difference (p>0.05). For the average standard deviation of PD between 60.63 mm~66.19 mm, dynamic stereoacuity fo two-rod test and three-rod test were $31.48{\pm}24.87sec$ of arc and $31.48{\pm}24.87sec$ of arc, respectively. The results showed statistically significant difference (p<0.05), but the relationship between dynamic stereoacuity and PD was not great. Comparison between two tests on the basis of refractive error, dynamic stereoacuity by three-rods test was better than by two-rods test with no significant difference between both tests (p>0.05) and there was little correlation between refractive error and two dynamic stereoacuity. Conclusions: Three-rods test showing lower stereoacuity than two-rods tests could measure the lower minimum threshold of dynamic stereoacuity. It was found that both tests can be applied to dynamic stereoacuity test as a standard test, and PD and refractive error was found that little effect upon the dynamic stereoacuity. PD and refractive error was found that little effect upon the dynamic stereoacuity.

Characteristics of Fish Assemblage by Reservoir Size in Yeongsan·Seomjin River Watershed in Korea (영산강·섬진강 수계 호소의 규모별 어류군집 특성)

  • Park, Sang-Hyeon;Kim, Jeong-Hui;Baek, Seung-Ho;Choi, Ho-Seung;Kim, Dae-Won;Ko, Eui-Jeong;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.3
    • /
    • pp.229-240
    • /
    • 2020
  • In this study, the results of fish assemblage survey for 16 reservoirs in the Yeongsan·Seomjin-River watershed were presented with fish assemblage characteristics analysis in relation to reservoir size. The survey method including number of sampling sites was followed the "Biomonitoring survey and assessment manual" of the Ministry of Environment/National Institute of Environmental Research (MOE/NIER), and the reservoirs were categorized as three size groups, small, medium or large reservoirs, based on the MOE/NIER as well. Total 13 family classified into 44 species were collected from 2018 (7 reservoirs) to 2019 (9 reservoirs), and the dominant and subdominant species were Hemiculter eigenmanni (Relative abundance, RA, 32.9%) and Lepomis macrochirus (RA, 31.4%), respectively. As a result of the analysis in relation to the reservoir size, the average (±standard deviation) number of species of the small, medium and large reservoirs were 11±2.9, 14.3±2.1, 22.7±0.6, respectively, which showed positive correlation with the reservoir size. Total 6 fish assemblage characteristics(number of species, number of individuals, richness index, herbivorous fish ratio, carnivorous fish ratio, exotic fish ratio) showed significant differences between the each reservoir size groups (P<0.05). As a result of cluster analysis, 16 reservoirs were clustered into 5 groups with 60% similarity, and the each reservoirs seems to be clustered depends on the distance from each other, watershed and their historical geology rather than size. These results are baseline information for the understanding of fish assemblage in Korean reservoirs, important for establishing management policy of reservoirs in the Yeongsan·Seomjin-River watershed.

Improvement of GPS positioning accuracy by static post-processing method (정적 후처리방식에 의한 GPS의 측위정도 개선)

  • 김민선;신현옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.251-261
    • /
    • 2003
  • To measure the GPS position accuracy and its distribution according to the length of the baseline, 30 minutes to 24 hours observations at the fixed location were conducted with two GPS receivers (Ll, 12 channels) on May 29 to June 2, 2002. The GPS data received at the reference station, the rover station and the ordinary times GPS observation station operated by the National Geography Institute in Korea were processed in kinematic and static post-processing methods with a post -processing software. The results obtained are summarized as follows: 1. The number of the satellite that could be observed continuously more than six hours was 16 and most of these satellites were positioned at east-west direction on May 31, 2002. The number of the satellite observed and the geometric dilution of precision (GDOP) determined by the average of every 10 minute for the day were 8 and 3.89, respectively. 2. Both the average GPS positions before and after post-processing were shifted (standalone: 1.17 m, post -processing: 0.43m) to the south and west. The twice distance root mean square (2drms) measured with standalone was 6.65m. The 2drms could be reduced to 33.8% (standard deviation 0=17.2) and 5.3% (0=2.2) of standalone by the kinematic and the static post-processing methods, respectively. 3. The relationship between the length of the baseline x (km) and the 2drms y (m) obtained by the static post-processing method was y=0.00l6x+0.006 $(R^2=0.87)$. In the case of the positioning with the static post-processing method using the GPS receiver, it was found that a positioning within 20cm 2drms was possible when the length of the baseline was less than 100km and the receiving time of the GPS is more than 30 minutes.

In vivo evaluation of accuracy and consistency of two electronic apex locators (2종 전자근관장측정기의 정확도 및 일관성에 관한 in vivo 연구)

  • Pi, Chien-Yun;Kim, Eui-Seong;Jung, Il-Young;Lee, Seung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.6
    • /
    • pp.453-460
    • /
    • 2010
  • Objectives: To evaluate the accuracy and consistency of two different apex locators at both the Apex and 0.5 marks. Materials and Methods: Twenty-six root canals was scheduled for extraction for periodontal or prosthodontic reasons. Thirteen canals were measured using Root ZX and the rest by i-ROOT. The root canal length was measured both the at 0.5 mark and the Apex mark. The file was then fixed to the toot, and the distance from the file tip to the major foramen of each canal was measured after removing the root dentin under the microscope so that the major foramen and the file tip were seen. Results: 1. When the Apex mark was used, 100% of both the Root ZX and i-ROOT groups were within 0.5 mm of the major foramen. 2. When 0.5 mark was used, 100% of the Root ZX group and 77% of the i-ROOT group were within 0.5 mm of the major foramen. 3. In terms of standard deviation and quartile value, the Apex mark was more consistent than 0.5 mark in the Root ZX group, and 0.5 mark was more consistent in the i-ROOT group, but there was no statistically significant difference when compared with t-test. 4. The root canal length difference between the Apex mark and 0.5 mark was 0.22 mm and 0.46 mm in the Root ZX and i-ROOT groups, respectively. Conclusions: In this study, the Apex mark was the more consistent mark. Therefore, it is recommended to subtract 0.5 mm, which is the average length between the apex and apical constriction, from the root canal length at the Apex mark to obtain the working length clinically.

Dose Evaluation at The Build Up Region Using by Wedge Filter (쐐기필터 사용에 따른 선량증가 영역에서 선량평가)

  • Kim, Yon-Lae;Moon, Seong-Kong;Suh, Tae-Suk;Chung, Jin-Beom;Kim, Jin-Young;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.37 no.4
    • /
    • pp.341-348
    • /
    • 2014
  • Wedge filter could use to increase the dose distribution at the hot dose regions. We evaluated dose discrepancy at surface and build region in the infield and outfield that Metal Wedge (MW) and Enhance Dynamic Wedge (EDW) were interact with photon. In this paper, we used Gafchromic EBT3 film that had excellent spatial resolution, composed the water equivalent materials and changed the optical density without development. The set up conditions of linear accelerator were fixed 6 MV photon, 100 cm SSD, $10{\times}10cm^2$ field size and were irradiated 400 cGy at Dmax. The dose distribution and absorbed dose were evaluated when we compared the open field with $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ metal wedge and enhanced dynamic wedge. A $15^{\circ}$ metal wedge could increase the surface and build up region dose than using a $15^{\circ}$ enhanced dynamic wedge. A $30^{\circ}$ metal wedge could decrease the surface and build up region dose than using a $30^{\circ}$ enhanced dynamic wedge. A $45^{\circ}$ metal wedge could decrease by large deviation the surface and build up region dose than using a $15^{\circ}$ enhanced dynamic wedge. The dose of penumbra region at outfield were increased on the thick side but were decreased on the thin side. It could be decrease the surface dose and build up region dose, if the metal wedge filters were properly used to make a good dose distribution and not closed the distance of surface.