• 제목/요약/키워드: developmental genes

검색결과 591건 처리시간 0.025초

Forkhead Genes are Key Regulators of Developmental Processes in Aspergillus nidulans

  • Oh, Dong-Soon;Kim, Jong-Hwa;Han, Dong-Min;Han, Kap-Hoon
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2014년도 춘계학술대회 및 임시총회
    • /
    • pp.39-39
    • /
    • 2014
  • In a homothallic filamentous fungus Aspergillus nidulans, sexual and asexual developments are largely affected by the genetic and environmental factors. To regulate the complex subsets of genes involved in the developmental processes accurately, tight regulations of transcription factors are required. The forkhead type transcription factors are the class of regulators that function in a broad spectrum of cellular and developmental processes in many species from yeast to human. Here, we identified the fkhA and fkhB genes that encode a conserved forkhead transcription factors. The fkhA deletion resulted in the complete loss of fruiting body formation under all conditions favoring sexual development, suggesting that the fkhA gene is required for sexual development in A. nidulans. Overexpression of fkhA resulted in enhanced formation of fruiting bodies under induction condition not only in the normal condition but also in the condition of presence of 0.6 M KCl, which strongly inhibits sexual development. To know the function of the fkhB gene, we also generated fkhB knock-out strain in A. nidulans. Deletion of fkhB resulted in abnormal conidiophore formation under standard conditions and delayed sexual development process, suggesting that the fkhB gene plays an important role in conidiophore morphogenesis Taken together, these results suggest that the fkhA gene is necessary and sufficient for regulating sexual development and the fkhB gene is a transcription factor related in asexual developmental process in A. nidulans.

  • PDF

Identification of Long Non-Coding RNAs and Their Target Genes from Mycelium and Primordium in Model Mushroom Schizophyllum commune

  • Tuheng Wu;Jian Chen;Chunwei Jiao;Huiping Hu;Qingping Wu;Yizhen Xie
    • Mycobiology
    • /
    • 제50권5호
    • /
    • pp.357-365
    • /
    • 2022
  • Schizophyllum commune has emerged as the most promising model mushroom to study developmental stages (mycelium, primordium), which are two primary processes of fruit body development. Long non-coding RNA (lncRNA) has been proved to participate in fruit development and sex differentiation in fungi. However, potential lncRNAs have not been identified in S. commune from mycelium to primordium developmental stages. In this study, lncRNA-seq was performed in S. commune and 61.56 Gb clean data were generated from mycelium and primordium developmental stages. Furthermore, 191 lncRNAs had been obtained and a total of 49 lncRNAs were classified as differently expressed lncRNAs. Additionally, 26 up-regulated differently expressed lncRNAs and 23 down-regulated between mycelium and primordia libraries were detected. Further, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differentially expressed lncRNAs target genes from the MAPK pathway, phosphatidylinositol signal, ubiquitin-mediated proteolysis, autophagy, and cell cycle. This study provides a new resource for further research on the relationship between lncRNA and two developmental stages (mycelium, primordium) in S. commune.

A genetic approach to comprehend the complex and dynamic event of floral development: a review

  • Jatindra Nath Mohanty;Swayamprabha Sahoo;Puspanjali Mishra
    • Genomics & Informatics
    • /
    • 제20권4호
    • /
    • pp.40.1-40.8
    • /
    • 2022
  • The concepts of phylogeny and floral genetics play a crucial role in understanding the origin and diversification of flowers in angiosperms. Angiosperms evolved a great diversity of ways to display their flowers for reproductive success with variations in floral color, size, shape, scent, arrangements, and flowering time. The various innovations in floral forms and the aggregation of flowers into different kinds of inflorescences have driven new ecological adaptations, speciation, and angiosperm diversification. Evolutionary developmental biology seeks to uncover the developmental and genetic basis underlying morphological diversification. Advances in the developmental genetics of floral display have provided a foundation for insights into the genetic basis of floral and inflorescence evolution. A number of regulatory genes controlling floral and inflorescence development have been identified in model plants such as Arabidopsis thaliana and Antirrhinum majus using forward genetics, and conserved functions of many of these genes across diverse non-model species have been revealed by reverse genetics. Transcription factors are vital elements in systems that play crucial roles in linked gene expression in the evolution and development of flowers. Therefore, we review the sex-linked genes, mostly transcription factors, associated with the complex and dynamic event of floral development and briefly discuss the sex-linked genes that have been characterized through next-generation sequencing.

질소고정 공생관계 관련 유전자 (Genes Involved in Symbiotic Nitrogen Fixation)

  • 안정선
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1987년도 식물생명공학 심포지움 논문집 Proceedings of Symposia on Plant Biotechnology
    • /
    • pp.81-101
    • /
    • 1987
  • In an attempt to revies the informations about genes involved in symbiotic nitrogen fixation, developmental processes in which host plant interact with microbe during nodule formation were introduced first. The structure, function and regulation of the genes discussed were mainly about microbial genes; those involved in the process of nodule formation (nod-genes) and of nitrogen fixation (nif-genes). Informations about the host genes involved in the symbiosis were discussed briefly.

  • PDF

Selective Gene Express Profiles in Rat Uterus during Estrus Cycle

  • Kim, Do-Rim;Yu, Seong-Jin;Kim, Jee-Yun;Youm, Mi-Young;Lee, Chae-Kwan;Kang, Sung-Goo
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.70-70
    • /
    • 2003
  • The uterus undergoes dynamic changes during the cycle and displays many features typical of developmental process. In order to be prepared for implantation, endometrium undergoes predictable, sequential phases of proliferation and secretory changes. The uterus during estrus cycle synthesize a complex of signaling molecules with specific spatial and temporal modes of expression and which are critical for cell proliferation and differentiation. The purpose of this investigation was to use cDNA microarrays to evaluate the expression of genes of rat uterus in estrus cycle. Animals were sacrificed on proestrus, estrus, metestrus, diestrus. Differential gene expression profiles were revealed(growth-related c-myc reponsive protein RCL, heat shock 47-kDa protein (HSP47), cytochrome c oxidase polypeptide Vlc2 (COX6C2), calreticulin (CALR)). Reverse transcription polymerase chain reaction (RT-PCR) was used to validate the relative expression pattern. Using this approach, we found several genes whose expression in rat uterus was altered with estrus cycle. Our long-term goal is to determine the role of these differentially expressed genes during estrus cycle. This study was supported by through the Biohealth Products Research Center(BPRC), Inje University.

  • PDF

Isolation of Genes Specifically Expressed in Different Developmental Stages of Pleurotus ostreatus Using Macroarray Analysis

  • Lee, Seung-Ho;Joh, Joong-Ho;Lee, Jin-Sung;Lim, Jong-Hyun;Kim, Kyung-Yun;Yoo, Young-Bok;Lee, Chang-Soo;Kim, Beom-Gi
    • Mycobiology
    • /
    • 제37권3호
    • /
    • pp.230-237
    • /
    • 2009
  • The oyster mushroom (Pleurotus ostreatus) is one of the most important edible mushrooms worldwide. The mechanism of P. ostreatus fruiting body development has been of interest both for the basic understanding of the phenotypic change of the mycelium-fruiting body and to improve breeding of the mushrooms. Based on our previous publication of P. ostreatus expressed sequence tag database, 1,528 unigene clones were used in macroarray analysis of mycelium, fruiting body and basidiospore developmental stages of P. ostreatus. Gene expression profile databases generated by evaluating expression levels showed that 33, 10, and 94 genes were abundantly expressed in mycelium, fruiting body and basidiospore developmental stages, respectively. Among them, the genes specifically expressed in the fruiting body stage were further analyzed by reverse transcription-polymerase chain reaction and Northern blot to investigate temporal and spatial expression patterns. These results provide useful information for future studies of edible mushroom development.

Molecular genetic decoding of malformations of cortical development

  • Lim, Jae Seok;Lee, Jeong Ho
    • Journal of Genetic Medicine
    • /
    • 제12권1호
    • /
    • pp.12-18
    • /
    • 2015
  • Malformations of cortical development (MCD) cover a broad spectrum of developmental disorders which cause the various clinical manifestations including epilepsy, developmental delay, and intellectual disability. MCD have been clinically classified based on the disruption of developmental processes such as proliferation, migration, and organization. Molecular genetic studies of MCD have improved our understanding of these disorders at a molecular level beyond the clinical classification. These recent advances are resulted from the development of massive parallel sequencing technology, also known as next-generation sequencing (NGS), which has allowed researchers to uncover novel molecular genetic pathways associated with inherited or de novo mutations. Although an increasing number of disease-related genes or genetic variations have been identified, genotype-phenotype correlation is hampered when the biological or pathological functions of identified genetic variations are not fully understood. To elucidate the causality of genetic variations, in vivo disease models that reflect these variations are required. In the current review, we review the use of NGS technology to identify genes involved in MCD, and discuss how the functions of these identified genes can be validated through in vivo disease modeling.

Selection of Reliable Reference Genes for Real-time qRT-PCR Analysis of Zi Geese (Anser anser domestica) Gene Expression

  • Ji, Hong;Wang, Jianfa;Liu, Juxiong;Guo, Jingru;Wang, Zhongwei;Zhang, Xu;Guo, Li;Yang, Huanmin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권3호
    • /
    • pp.423-432
    • /
    • 2013
  • Zi geese (Anser anser domestica) belong to the white geese and are excellent layers with a superior feed-to-egg conversion ratio. Quantitative gene expression analysis, such as Real-time qRT-PCR, will provide a good understanding of ovarian function during egg-laying and consequently improve egg production. However, we still don't know what reference genes in geese, which show stable expression, should be used for such quantitative analysis. In order to reveal such reference genes, the stability of seven genes were tested in five tissues of Zi geese. Methodology/Principal Findings: The relative transcription levels of genes encoding hypoxanthine guanine phosphoribosyl transferase 1 (HPRT1), ${\beta}$-actin (ACTB), ${\beta}$-tubulin (TUB), glyceraldehyde-3-phosphate-dehydrogenase (GADPH), succinate dehydrogenase flavoprotein (SDH), 28S rRNA (28S) and 18S rRNA (18S) have been quantified in heart, liver, kidney, muscle and ovary in Zi geese respectively at different developmental stages (1 d, 2, 4, 6 and 8 months). The expression stability of these genes was analyzed using geNorm, NormFinder and BestKeeper software. Conclusions: The expression of 28S in heart, GAPDH in liver and ovary, ACTB in kidney and HPRT1 in muscle are the most stable genes as identified by the three different analysis methods. Thus, these genes are recommended for use as candidate reference genes to compare mRNA transcription in various developmental stages of geese.