Browse > Article
http://dx.doi.org/10.5734/JGM.2015.12.1.12

Molecular genetic decoding of malformations of cortical development  

Lim, Jae Seok (Graduate School of Medical Science and Engineering, KAIST)
Lee, Jeong Ho (Graduate School of Medical Science and Engineering, KAIST)
Publication Information
Journal of Genetic Medicine / v.12, no.1, 2015 , pp. 12-18 More about this Journal
Abstract
Malformations of cortical development (MCD) cover a broad spectrum of developmental disorders which cause the various clinical manifestations including epilepsy, developmental delay, and intellectual disability. MCD have been clinically classified based on the disruption of developmental processes such as proliferation, migration, and organization. Molecular genetic studies of MCD have improved our understanding of these disorders at a molecular level beyond the clinical classification. These recent advances are resulted from the development of massive parallel sequencing technology, also known as next-generation sequencing (NGS), which has allowed researchers to uncover novel molecular genetic pathways associated with inherited or de novo mutations. Although an increasing number of disease-related genes or genetic variations have been identified, genotype-phenotype correlation is hampered when the biological or pathological functions of identified genetic variations are not fully understood. To elucidate the causality of genetic variations, in vivo disease models that reflect these variations are required. In the current review, we review the use of NGS technology to identify genes involved in MCD, and discuss how the functions of these identified genes can be validated through in vivo disease modeling.
Keywords
Malformations of cortical development; High-throuhput nucleotide sequencing; Next generation sequencing; Animal disease models;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 1987;51:503-12.   DOI
2 Uhlmann EJ, Wong M, Baldwin RL, Bajenaru ML, Onda H, Kwiatkowski DJ, et al. Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 2002;52:285-96.   DOI
3 Way SW, McKenna J 3rd, Mietzsch U, Reith RM, Wu HC, Gambello MJ. Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse. Hum Mol Genet 2009;18:1252-65.   DOI
4 Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 1994;265:103-6.   DOI
5 Bi W, Sapir T, Shchelochkov OA, Zhang F, Withers MA, Hunter JV, et al. Increased LIS1 expression affects human and mouse brain development. Nat Genet 2009;41:168-77.   DOI
6 Wolfer DP, Crusio WE, Lipp HP. Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci 2002;25:336-40.   DOI
7 Crusio WE. Flanking gene and genetic background problems in genetically manipulated mice. Biol Psychiatry 2004;56:381-5.   DOI
8 Papaioannou VE, Behringer RR. Early embryonic lethality in genetically engineered mice: diagnosis and phenotypic analysis. Vet Pathol 2012;49:64-70.   DOI
9 Kratochwil CF, Rijli FM. The Cre/Lox system to assess the development of the mouse brain. Methods Mol Biol 2014;1082:295-313.   DOI
10 LoTurco J, Manent JB, Sidiqi F. New and improved tools for in utero electroporation studies of developing cerebral cortex. Cereb Cortex 2009;19(Suppl 1):i120-5.   DOI
11 dal Maschio M, Ghezzi D, Bony G, Alabastri A, Deidda G, Brondi M, et al. High-performance and site-directed in utero electroporation by a triple-electrode probe. Nat Commun 2012;3:960.   DOI
12 Takahashi M, Sato K, Nomura T, Osumi N. Manipulating gene expressions by electroporation in the developing brain of mammalian embryos. Differentiation 2002;70:155-62.   DOI
13 Fukuchi-Shimogori T, Grove EA. Neocortex patterning by the secreted signaling molecule FGF8. Science 2001;294:1071-4.   DOI
14 Bai J, Ramos RL, Ackman JB, Thomas AM, Lee RV, LoTurco JJ. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat Neurosci 2003;6:1277-83.   DOI
15 Feliciano DM, Su T, Lopez J, Platel JC, Bordey A. Single-cell Tsc1 knockout during corticogenesis generates tuber-like lesions and reduces seizure threshold in mice. J Clin Invest 2011;121:1596-607.   DOI
16 Shimogori T, Ogawa M. Gene application with in utero electroporation in mouse embryonic brain. Dev Growth Differ 2008;50:499-506.   DOI
17 Beaulieu CL, Samuels ME, Ekins S, McMaster CR, Edwards AM, Krainer AR, et al. A generalizable pre-clinical research approach for orphan disease therapy. Orphanet J Rare Dis 2012;7:39.   DOI
18 Guerrini R. Genetic malformations of the cerebral cortex and epilepsy. Epilepsia 2005;46(Suppl)1:32-7.
19 Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012;135:1348-69.   DOI
20 Pang T, Atefy R, Sheen V. Malformations of cortical development. Neurologist 2008;14:181-91.   DOI
21 Manzini MC, Walsh CA. What disorders of cortical development tell us about the cortex: one plus one does not always make two. Curr Opin Genet Dev 2011;21:333-9.   DOI
22 Bilguvar K, Ozturk AK, Louvi A, Kwan KY, Choi M, Tatli B, et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 2010;467:207-10.   DOI
23 Hussain MS, Baig SM, Neumann S, Nurnberg G, Farooq M, Ahmad I, et al. A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function. Am J Hum Genet 2012;90:871-8.   DOI
24 Poirier K, Lebrun N, Broix L, Tian G, Saillour Y, Boscheron C, et al. Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat Genet 2013;45:639-47.   DOI
25 Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 2012;44:941-5.   DOI
26 Riviere JB, Mirzaa GM, O'Roak BJ, Beddaoui M, Alcantara D, Conway RL, et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet 2012;44:934-40.   DOI
27 Yu TW, Mochida GH, Tischfield DJ, Sgaier SK, Flores-Sarnat L, Sergi CM, et al. Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat Genet 2010;42:1015-20.   DOI
28 Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 2014;15:121-32.   DOI
29 Bakircioglu M, Carvalho OP, Khurshid M, Cox JJ, Tuysuz B, Barak T, et al. The essential role of centrosomal NDE1 in human cerebral cortex neurogenesis. Am J Hum Genet 2011;88:523-35.   DOI
30 Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 2013;14:681-91.   DOI
31 Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 2011;12:745-55.   DOI
32 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297-303.   DOI
33 DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011;43:491-8.   DOI
34 Bras J, Guerreiro R, Hardy J. Use of next-generation sequencing and other whole-genome strategies to dissect neurological disease. Nat Rev Neurosci 2012;13:453-64.
35 Barak T, Kwan KY, Louvi A, Demirbilek V, Saygi S, Tuysuz B, et al. Recessive LAMC3 mutations cause malformations of occipital cortical development. Nat Genet 2011;43:590-4.   DOI
36 Murdock DR, Clark GD, Bainbridge MN, Newsham I, Wu YQ, Muzny DM, et al. Whole-exome sequencing identifies compound heterozygous mutations in WDR62 in siblings with recurrent polymicrogyria. Am J Med Genet A 2011;155A:2071-7.
37 Ding L, Wendl MC, McMichael JF, Raphael BJ. Expanding the computational toolbox for mining cancer genomes. Nat Rev Genet 2014;15:556-70.   DOI
38 Poduri A, Evrony GD, Cai X, Elhosary PC, Beroukhim R, Lehtinen MK, et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 2012;74:41-8.   DOI
39 Jamuar SS, Lam AT, Kircher M, D'Gama AM, Wang J, Barry BJ, et al. Somatic mutations in cerebral cortical malformations. N Engl J Med 2014;371:733-43.   DOI
40 Poduri A, Evrony GD, Cai X, Walsh CA. Somatic mutation, genomic variation, and neurological disease. Science 2013;341:1237758.   DOI
41 Kim SY, Speed TP. Comparing somatic mutation-callers: beyond Venn diagrams. BMC Bioinformatics 2013;14:189.   DOI
42 Goode DL, Hunter SM, Doyle MA, Ma T, Rowley SM, Choong D, et al. A simple consensus approach improves somatic mutation prediction accuracy. Genome Med 2013;5:90.   DOI
43 Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods 2010;7:248-9.   DOI
44 Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 2003;31:3812-4.   DOI
45 Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 2011;39:e118.   DOI
46 Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014;46:310-5.   DOI