• Title/Summary/Keyword: deuterium

Search Result 261, Processing Time 0.029 seconds

Methodological Study on Measurement of Hydrogen Abundance in Hydrogen Isotopes System by Low Resolution Mass Spectrometry

  • Lia, Jin-Ying;Shib, Lei;Hub, Shi-Lin
    • Mass Spectrometry Letters
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • China's rapid economic growth has resulted in significant environmental side effects. Therefore, China has been interested in reducing her dependence on foreign oil and gas by developing technologies needed for hydrogen, in addition to her increasing energy mix of nuclear and renewable energy form, such as solar and wind power. There are three isotopes of hydrogen, i.e. protium (P or H), deuterium (D), and tritium (T). Both deuterium and tritium are important materials in nuclear fuel cycle industry. Tritium is one of the critical radioactive nuclides. Planning for and implementing contamination control as a part of normal operation and maintenance activities is an important function in any hydrogen facility, especially tritium facility. The development of hydrogen isotopes analysis is the key issues in this area. Mass spectrometry (MS) with medium (about 600) and high resolution (> 1,400) is commercially available; however, the routine analysis of hydrogen isotopes is done with low-resolution MS (< 200) in China. This paper summarizes the progress of MS measurement technology for hydrogen isotope abundance in China, focusing on our lab's research program and technical status. An analyzing method has been introduced for accurate measurement of tritium abundance in the H.D.T system by low resolution MAT-253 MS. The quotient of compression ratio coefficient is determined by building up equipment for laboratory-scale preparation of secondary standard gases and by considering the difference in sensitivity between hydrogen isotopes. The results show that the measured value is reproducible within the relative error range of 0.8% for gas samples of different tritium abundance.

Nucleophilic Substitution Reactions of N-Methyl α-Bromoacetanilides with Benzylamines in Dimethyl Sulfoxide

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.857-862
    • /
    • 2011
  • Kinetic studies of the reactions of N-methyl-Y-${\alpha}$-bromoacetanilides with substituted X-benzylamines have been carried out in dimethyl sulfoxide at $25.0^{\circ}C$. The Hammett plots for substituent X variations in the nucleophiles (log $k_N$ vs ${\sigma}_X$) are slightly biphasic concave upwards/downwards, while the Bronsted plots (log $k_N$ vs $pK_a$) are biphasic concave downwards with breakpoints at X = H. The Hammett plots for substituent Y variations in the substrates (log $k_N$ vs ${\sigma}_Y$) are biphasic concave upwards/downwards with breakpoints at Y = H. The cross-interaction constant $\rho_{XY}$ values are all negative: $\rho_{XY}$ = -0.32 for X = Y = electron-donating; -0.22 for X = electron-withdrawing and Y = electron-donating; -1.80 for X = electron-donating and Y = electronwithdrawing; -1.43 for X = Y = electron-withdrawing substituents. Deuterated kinetic isotope effects are primary normal ($k_H/k_D$ > 1) for Y = electron-donating, while secondary inverse ($k_H/k_D$ < 1) for Y = electronwithdrawing substituent. The proposed mechanisms of the benzylaminolyses of N-methyl-Y-${\alpha}$-bromoacetanilides are a concerted mechanism with a five membered ring TS involving hydrogen bonding between hydrogen (deuterium) atom in N-H(D) and oxygen atom in C = O for Y = electron-donating, while a concerted mechanism with an enolate-like TS in which the nucleophile attacks the ${\alpha}$-carbon for Y = electronwithdrawing substituents.

Trap Generation during SILC and Soft Breakdown Phenomena in n-MOSFET having Thin Gate Oxide Film (박막 게이트 산화막을 갖는 n-MOSFET에서 SILC 및 Soft Breakdown 열화동안 나타나는 결함 생성)

  • 이재성
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.1-8
    • /
    • 2004
  • Experimental results are presented for gate oxide degradation, such as SILC and soft breakdown, and its effect on device parameters under negative and positive bias stress conditions using n-MOSFET's with 3 nm gate oxide. The degradation mechanisms are highly dependent on stress conditions. For negative gate voltage, both interface and oxide bulk traps are found to dominate the reliability of gate oxide. However, for positive gate voltage, the degradation becomes dominated mainly by interface trap. It was also found the trap generation in the gate oxide film is related to the breakage of Si-H bonds through the deuterium anneal and additional hydrogen anneal experiments. Statistical parameter variations as well as the “OFF” leakage current depend on both electron- and hole-trapping. Our results therefore show that Si or O bond breakage by tunneling electron and hole can be another origin of the investigated gate oxide degradation. This plausible physical explanation is based on both Anode-Hole Injection and Hydrogen-Released model.

Preparation of ultra-clean hydrogen and deuterium terminated Si(111)-($1{\times}1$) surfaces and re-observation of the surface phonon dispersion curves

  • Kato, H.;Taoka, T.;Murugan, P.;Kawazoe, Y.;Yamada, T.;Kasuya, A.;Suto, S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.4-5
    • /
    • 2010
  • The surface phonon is defined as a coherent vibrational excitation of surface atoms propagating along the surface. It is characterized by a phonon dispersion curves, which were extensively studied in 1990's using helium atom scattering and high-resolution electron-energy-loss spectroscopy (HREELS)[1].The understanding is mainly based on the theoretical framework of a classical bond model or cluster calculations. The recent sample preparation and first principles calculations open the naval way to deep insight for surface phonon problems. The surface phonon dispersion on the hydrogen-terminated Si(111)-($1{\times}1$) surface [H:Si(111)] is the typical system and already reported experimentally [2] and theoretically [3], although the understandingis incomplete. The sample contaminated by the oxygen atoms on the surface and the calculations were also classical. In this study, firstly, we have prepared an ultra-clean H:Si(111) surface [4] and measured the surface phonon dispersion curvesusing HREELS. Secondly, we have performed first-principles density functional calculations with the projector augmented wave functionals, as implemented in VASP, using generalized gradient approximations. We used aslab of six silicon layers and both top and bottom surfaces were terminated with hydrogen atoms. Finally, we have compared with the surface phonon dispersion of deuterium-terminatedSi(111)-($1{\times}1$) surface[5] and led to our conclusions. The Si-H stretching and the bending modes are observed at 258.5 and 78.2 meV, respectively. These energies are the same as the previously reported values [2], but the energy-loss peaks at the lower energy regions are dramatically shifted. Through this combination study, we have formulated the procedure of preparing ultra-clean H:Si(111)/D:Si(111), which was confirmed by HREELS vibrational analysis. The Si surface will be utilized for further nano-physics research as well as for the materials for nano-fubrication.

  • PDF

Hydroxide ion Conduction Mechanism in Mg-Al CO32- Layered Double Hydroxide

  • Kubo, Daiju;Tadanaga, Kiyoharu;Hayashi, Akitoshi;Tatsumisago, Masahiro
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.230-236
    • /
    • 2021
  • Ionic conduction mechanism of Mg-Al layered double hydroxides (LDHs) intercalated with CO32- (Mg-Al CO32- LDH) was studied. The electromotive force for the water vapor concentration cell using Mg-Al CO32- LDH as electrolyte showed water vapor partial pressure dependence and obeyed the Nernst equation, indicating that the hydroxide ion transport number of Mg-Al CO32- LDH is almost unity. The ionic conductivity of Mg(OH)2, MgCO3 and Al2(CO3)3 was also examined. Only Al2(CO3)3 showed high hydroxide ion conductivity of the order of 10-4 S cm-1 under 80% relative humidity, suggesting that Al2(CO3)3 is an ion conducting material and related to the generation of carrier by interaction with water. To discuss the ionic conduction mechanism, Mg-Al CO32- LDH having deuterium water as interlayer water (Mg-Al CO32- LDH(D2O)) was prepared. After the adsorbed water molecules on the surface of Mg-Al CO32- LDH(D2O) were removed by drying, DC polarization test for dried Mg-Al CO32- LDH(D2O) was examined. The absorbance attributed to O-D-stretching band for Mg-Al CO32- LDH(D2O) powder at around the positively charged electrode is larger than that before polarization, indicating that the interlayer in Mg-Al CO32- LDH is a hydroxide ion conduction channel.

Effects of Annealing Gas and Pressure Conditions on the Electrical Characteristics of Tunneling FET (가스 및 압력조건에 따른 Annealing이 Tunneling FET의 전기적 특성에 미치는 영향)

  • Song, Hyun-Dong;Song, Hyeong-Sub;Babu, Eadi Sunil;Choi, Hyun-Woong;Lee, Hi-Deok
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.704-709
    • /
    • 2019
  • In this paper, the electrical characteristics of tunneling field effect transistor(TFET) was studied for different annealing conditions. The TFET samples annealed using hydrogen forming gas(4 %) and Deuterium($D_2$) forming gas(4 %). All the measurements were conducted in noise shielded environment. The results show that subthreshold slope(SS) decreased by 33 mV/dec after annealing process compared to before annealing. Under various temperature range, the noise is improved by average of 31.2 % for 10 atm Deuterium gas at $V_G=3V$ condition. It is also noticed that, post metal annealing with $D_2$ gas reduces the noise by average of 30.7 % at $I_D=100nA$ condition.

INTRINSIC NMR ISOTOPE SHIFTS OF CYCLOOCTANONE AT LOW TEMPERATURE (저온에서의 싸이클로옥타논에 대한 고유동위원소 효과)

  • Jung, Miewon
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.213-224
    • /
    • 1994
  • Several isotopomers of cyclooctanone were prepared by selective deuterium substitution. Intrinsic isotope effects on $^{13}C$ NMR chemical shifts of these isotopomers were investigated systematically at low temperature. These istope effects were discussed in relation to the preferred boat-chair conformation of cyclooctanone. Deuterium isotope effects on NMR chemical shifts have been known for a long time. Especially in a conformationally mobile molecule, isotope perturbation could affect NMR signals through a combination of isotope effects on equilibria and intrinsic effects. The distinction between intrinsic and nonintrinsic effects is quite difficult at ambient temperature due to involvement of both equilibrium and intrinsic isotope effects. However if equilibria between possible conformers of cyclooctanone are slowed down enough on the NMR time scale by lowering temperature, it should be possible to measure intrinsic isotope shifts from the separated signals at low temperature. $^{13}C$ NMR has been successfully utilized in the study on molecular conformation in solution when one deals with stable conformers or molecules were rapid interconversion occurs at ambient temperature. The study of dynamic processes in general requires analysis of spectra at several temperature. Anet et al. did $^1H$ NMR study of cyclooctanone at low temperature to freeze out a stable conformation, but were not able initially to deduce which conformation was stable because of the complexity of alkyl region in the $^1H$ NMR spectrum. They also reported the $^1H$ and $^{13}C$ NMR spectra of the $C_9-C_{16}$ cycloalkanones with changing temperature from $-80^{\circ}C$ to $-170^{\circ}C$, but they did not report a variable temperature $^{13}C$ NMR study of cyclooctanone. For the analysis of the intrinsic isotope effect with relation to cylooctanone conformation, $^{13}C$ NMR spectra are obtained in the present work at low temperatures (up to $-150^{\circ}C$) in order to find the chemical shifts at the temperature at which the dynamic process can be "frozen-out" on the NMR time scale and cyclooctanone can be observed as a stable conformation. Both the ring inversion and pseudorotational processes must be "frozen-out" in order to see separate resonances for all eight carbons in cyclooctanone. In contrast to $^1H$ spectra, slowing down just the ring inversion process has no apparent effects on the $^{13}C$ spectra because exchange of environments within the pairs of methylene carbons can still occur by the pseudorotational process. Several isotopomers of cyclooctanone were prepared by selective deuterium substitution (fig. 1) : complete deuterium labeling at C-2 and C-8 positions gave cyclooctanone-2, 2, 8, $8-D_4$ : complete labeling at C-2 and C-7 positions afforded the 2, 2, 7, $7-D_4$ isotopomer : di-deuteration at C-3 gave the 3, $3-D_2$ isotopomer : mono-deuteration provided cyclooctanone-2-D, 4-D and 5-D isotopomers : and partial deuteration on the C-2 and C-8 position, with a chiral and difunctional case catalyst, gave the trans-2, $8-D_2$ isotopomer. These isotopomer were investigated systematically in relation with cyclooctanone conformation and intrinsic isotope effects on $^{13}C$ NMR chemical shifts at low temperature. The determination of the intrinsic effects could help in the analysis of the more complex effects at higher temperature. For quantitative analysis of intrinsic isotope effects, the $^{13}C$ NMR spectrum has been obtained for a mixture of the labeled and unlabeled compounds because the signal separations are very small.

  • PDF

Failure Probability Evaluation of Pressure Tube using the Probabilistic Fracture Mechanics (확률론적 파괴역학 기법을 이용한 압력관의 파손확률 평가)

  • Son, Jong-Dong;Oh, Dong-Joon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.7-12
    • /
    • 2007
  • In order to evaluate the integrity of Zr-2.5Nb pressure tubes, probabilistic fracture mechanics(PFM) approach was employed. Failure assessment diagram(FAD), plastic collapses, and critical crack lengths(CCL) were used for evaluating the failure probability as failure criteria. The Kr-FAD as failure assessment diagram was used because fracture of pressure tubes occurred in brittle manner due to hydrogen embrittlement of material by deuterium fluence. The probabilistic integrity evaluation observed AECL procedures and used fracture toughness parameters of EPRI and recently announced theory. In conclusion, the probabilistic approach using the Kr-FAD made it possible to determine major failure criterion in the pressure tube integrity evaluation.

Dehydrohalogenation Reactions Induced by Sodamide Containing Complex Bases (I). Mechanistic Studies on Dehydrohalogenation from trans-1,2-Dihalocyclohexanes (소다아미드를 포함하는 복합염기에 의한 탈할로겐화수소반응 (제1보). 트란스-1,2-디할로시클로헥산의 탈할로겐화수소 반응의 메카니즘 연구)

  • Jong Gun Lee;Kyung-Tae Kang;Euk-Suk Lee
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.20-25
    • /
    • 1984
  • Sodamide-containing complex base induced dehydrohalogenations from trans-1,2-dihalocyclohexanes were investigated. Isomerization, deuterium isotope effect along with element effect and others provided strong evidence in favor of E2 reaction mechanism.

  • PDF

Electrical Characteristic and Optical Diagnosis for Atmospheric Direct Plasma Jet

  • Hong, Seong In;Ghimire, B.;Hong, Young Jun;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.155.1-155.1
    • /
    • 2015
  • Nowadays, Plasma has been used in biological, medical such as wound healing, plant grow, killing cancer. When plasma generated, UV light and ROS(Reactive oxygen species), RNS(Reactive nitrogen species) can generated and those things effect to biological material. So we made simple plasma device using needle type of electrode and generated plasma. We used three kinds of gas and measured applied voltage and current. Also we observed optical emission spectrum. Using deuterium ramp, we can observed absorption spectrum and calculated radical density by lambert-beer's law. It is around ~1016cm3. And we can see the time-resolved absorption spectrum from monochromator, PMT(photo multiply tube), IV-converter, oscilloscope.

  • PDF