• Title/Summary/Keyword: deterministic model

Search Result 584, Processing Time 0.023 seconds

Train-Fleet Assignment based on Public Interests (공공성을 고려한 열차용량 할당)

  • Oh Seog-Moon;Son Moo-Sung;Choi In-Chan;Choi In-Sang
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.602-609
    • /
    • 2005
  • In this paper, we consider the train-fleet assignment problem to determine fleet assignment and seat allocation synchronously. An integer programming model of the problem and a decomposition-based solution approach are developed to handle short-term period deterministic orgin-destination demands. The primary objective used in the developed model is to maximize the total number of passengers transported during peak load periods, such as Chuseok national holiday period. Thus, in developing the model we choose to profit-pursuing system. We also show how the proposed model can be readily modified to incorporate profit-maximization. Using the empirical data sets provided by a Korean railroad company, we have tested the proposed solution approach and carried out various comparison analyses by varying traffic demand patterns and train schedules. The computational experiments reveal that the proposed solutions approach produces high quality solutions in reasonable computation time.

Reliability analysis of the nonlinear behaviour of stainless steel cover-plate joints

  • Averseng, Julien;Bouchair, Abdelhamid;Chateauneuf, Alaa
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.45-55
    • /
    • 2017
  • Stainless steel exhibits high ductility and strain hardening capacity in comparison with carbon steel widely used in constructions. To analyze the particular behaviour of stainless steel cover-plate joints, an experimental study was conducted. It showed large ductility and complex failure modes of the joints. A non-linear finite element model was developed to predict the main parameters influencing the behaviour of these joints. The results of this deterministic model allow us to built a meta-model by using the quadratic response surface method, in order to allow for efficient reliability analysis. This analysis is then applied to the assessment of design formulae in the currently used codes of practice. The reliability analysis has shown that the stainless steel joint design according to Eurocodes leads to much lower failure probabilities than the Eurocodes target reliability for carbon steel, which incites revising the resisting model evaluation and consequently reducing stainless steel joint costs. This approach can be used as a basis to evaluate a wide range of steel joints involving complex failure modes, particularly bearing failure.

PI Controller Design of the Refrigeration System Based on Dynamic Characteristic of the Second Order Model

  • Jung, Young-Mi;Jeong, Seok-Kwon;Yang, Joo-Ho
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.200-206
    • /
    • 2014
  • This paper deals with deterministic PI controller design based on dynamic characteristics for refrigeration system. The temperature control system of an oil cooler is described as a typical 2nd order model of the refrigeration system which has zeros in a transfer function. PI controller gains satisfying control specifications are represented by the dynamic characteristic functions using relationship between the parameters and the control specifications in the model. Phase margin was considered to increase robustness of the oil cooler control system. Furthermore, the influence of zeros in the model to the control specifications was analyzed in detail for improving control performance. The validity of the suggested PI controller design was investigated using the four types of gains which had been already confirmed their control performances through experiments.

Feedback control of intelligent structures with uncertainties and its robustness analysis

  • Cao, Zongjie;Wen, Bangchun;Kuang, Zhenbang
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.327-340
    • /
    • 2003
  • Variations in system parameters due to uncertainties of parameters may result in system performance deterioration and create system internal stability problems. Uncertainties in structural modeling of structures are often considered to ensure that the control system is robust with respect to response errors. So the uncertain concept plays an important role in the analysis and design of the engineering structures. In this paper, the active control of the intelligent structures with the uncertainties is studied and a new method for analyzing the robustness of systems with the uncertainties is presented. Firstly, the system with uncertain parameters is considered as the perturbation of the system with deterministic parameters. Secondly, the feedback control law is designed on the basis of deterministic system. Thirdly, perturbation analysis and robustness analysis of intelligent structures with uncertainties are discussed when the feedback control law is applied to the original system and perturbed system. Combining the convex model of uncertainties with the finite element method, the analysis theory of the robustness of intelligent structures with the uncertainties can be developed. The description and computation of the robustness of intelligent structures with uncertain parameters is obtained. Finally, a numerical example of the application of the present method is given to show the validity of the method.

Development of Methodology of New Effective Installed Reserve Rate considering Renewable Energy Generators (신재생에너지전원을 고려한 새로운 유효설비예비율 평가방법의 개발)

  • Park, Jeong-Je;Choi, Jae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.26-32
    • /
    • 2010
  • This paper proposes a new effective installed reserve rate in order to evaluate reliability of power system considering renewable generators, which include uncertainty of resource supply. It is called EIRR(effective installed reserve rate) in this paper. It is developed with considering capacity credit based on ELCC by using LOLE reliability criterion. While the conventional installed reserve rate index yields over-evaluation reliability of renewable generators, the proposed EIRR describes actual effective installed reserve rate. However, it is not the probabilistic reliability index as like as LOLE or EENS but another deterministic effective reliability index. The proposed EIRR is able to evaluate the realistic contribution to the reliability level for power system considering wind turbine generators and solar cell generators with high uncertainty in resource supply. The case study in model system as like as Jeju power system size presents a possibility that the proposed EIRR can be used practically as a new deterministic reliability index for generation expansion planning or operational planning in future.

Reliability-Based Shape Optimization Under the Displacement Constraints (변위 제한 조건하에서의 신뢰성 기반 형상 최적화)

  • Oh, Young-Kyu;Park, Jae-Yong;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.589-595
    • /
    • 2010
  • This paper presents a reliability-based shape optimization (RBSO) using the evolutionary structural optimization (ESO). An actual design involves uncertain conditions such as material property, operational load, poisson's ratio and dimensional variation. The deterministic optimization (DO) is obtained without considering of uncertainties related to the uncertainty parameters. However, the RBSO can consider the uncertainty variables because it has the probabilistic constraints. In order to determine whether the probabilistic constraint is satisfied or not, simulation techniques and approximation methods are developed. In this paper, the reliability-based shape design optimization method is proposed by utilization the reliability index approach (RIA), performance measure approach (PMA), single-loop single-vector (SLSV), adaptive-loop (ADL) are adopted to evaluate the probabilistic constraint. In order to apply the ESO method to the RBSO, a sensitivity number is defined as the change of strain energy in the displacement constraint. Numerical examples are presented to compare the DO with the RBSO. The results of design example show that the RBSO model is more reliable than deterministic optimization.

Estimating Correlation Dimensions of Land-Sea Breeze Phenomenon

  • Lee, Hwa-Woon;Kim, Yoo-Keun;Lee, Young-Gon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.2
    • /
    • pp.81-89
    • /
    • 1999
  • This study estimates the correlation dimensions of the land-sea breeze phenomenon, that has a clear diurnal cycle, in order to gain a more detailed understanding of this phenomenon. The data adopted include north-south wind velocity component(v) and temperature(T) time series that were observed at Kimhae Airport and Inje University over a period of 5 days, from the 4th to the 8th of August, 1994. The embedding phase space of the time series were reconstructed from 2 to 14 dimensions, and the correlation dimensions of the attractors were then estimated. The results show that the land-sea breeze phenomenon exhibits a deterministic chaos with non-integer correlation dimension values between 2 and 3. Accordingly, 3 is the minimum number of independent variables required to model the dynamics of the landsea breeze phenomenon in the Kimhae area. Since the saturated embedding dimension, when the correlation dimension remains unchanged, is larger for the wind velocity v-component than for temperature, this indicates that wind velocity is susceptible to topology.

  • PDF

SYSTEM RELIABILITY-BASED EVALUATION OF BRIDGE SYSTEM REDUNDANCY AND STRENGTH (체계신뢰성에 기초한 교량의 시스템여용성 및 저항강도 평가)

  • 조효남;이승재;임종권
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.240-247
    • /
    • 1993
  • The precise prediction of reserved carrying capacity of bridge as a system is extremely difficult especially when the bridges are highly redundant and significantly deteriorated or damaged. This paper is intended to propose a new approach for the evaluation of reserved system carrying capacity of bridges in terms of equivalent system-strength, which may be defined as a bridge system-strength corresponding to the system reliability of the bridge. This can be derived from an inverse process based on the concept of FOSM form of system reliability index. It may be emphasized that this approach is very useful for the evaluation of the deterministic system redundancy and reserve strength which are measured in terms of either probabilistic system redundancy factor and reserve factor or deterministic system redundancy factor and reserve factor. The system reliability of bridges is formulated as a parallel-series model obtained from the FAM(Failure Mode Approach) based on the major failure mechanisms. AFOSM and IST methods are used for the reliability analysis of the proposed models. The proposed approach and method for the system redundancy and reserve safety/strength are applied to the safety assessment of actual RC and steel box-girder bridges. The results of the evaluation of reserved system safety or bridge system-strength in terms of the system redundancy and the system safety/strength are significantly different from those of element reliability-based or conventional methods.

  • PDF

Reliability-Based Design Optimization using Semi-Numerical Strategies for Structural Engineering Applications

  • Kharmanda, G.;Sharabatey, S.;Ibrahim, H.;Makhloufi, A.;Elhami, A.
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • When Deterministic Design Optimization (DDO) methods are used, deterministic optimum designs are frequently pushed to the design constraint boundary, leaving little or no room for tolerances (or uncertainties) in design, manufacture, and operating processes. In the Reliability-Based Design Optimization (RBDO) model for robust system design, the mean values of uncertain system variables are usually used as design variables, and the cost is optimized subject to prescribed probabilistic constraints as defined by a nonlinear mathematical programming problem. Therefore, a RBDO solution that reduces the structural weight in uncritical regions does not only provide an improved design but also a higher level of confidence in the design. In this work, we seek to improve the quality of RBDO processes using efficient optimization techniques with object of improving the resulting objective function and satisfying the required constraints. Our recent RBDO developments show its efficiency and applicability in this context. So we present some recent structural engineering applications demonstrate the efficiency of these developed RBDO methods.

Assessment of Near-Term Climate Prediction of DePreSys4 in East Asia (DePreSys4의 동아시아 근미래 기후예측 성능 평가)

  • Jung Choi;Seul-Hee Im;Seok-Woo Son;Kyung-On Boo;Johan Lee
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.355-365
    • /
    • 2023
  • To proactively manage climate risk, near-term climate predictions on annual to decadal time scales are of great interest to various communities. This study evaluates the near-term climate prediction skills in East Asia with DePreSys4 retrospective decadal predictions. The model is initialized every November from 1960 to 2020, consisting of 61 initializations with ten ensemble members. The prediction skill is quantitatively evaluated using the deterministic and probabilistic metrics, particularly for annual mean near-surface temperature, land precipitation, and sea level pressure. The near-term climate predictions for May~September and November~March averages over the five years are also assessed. DePreSys4 successfully predicts the annual mean and the five-year mean near-surface temperatures in East Asia, as the long-term trend sourced from external radiative forcing is well reproduced. However, land precipitation predictions are statistically significant only in very limited sporadic regions. The sea level pressure predictions also show statistically significant skills only over the ocean due to the failure of predicting a long-term trend over the land.