• Title/Summary/Keyword: deterministic

Search Result 1,719, Processing Time 0.034 seconds

Baleen Whale Sound Synthesis using a Modified Spectral Modeling (수정된 스펙트럴 모델링을 이용한 수염고래 소리 합성)

  • Jun, Hee-Sung;Dhar, Pranab K.;Kim, Cheol-Hong;Kim, Jong-Myon
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.69-78
    • /
    • 2010
  • Spectral modeling synthesis (SMS) has been used as a powerful tool for musical sound modeling. This technique considers a sound as a combination of a deterministic plus a stochastic component. The deterministic component is represented by the series of sinusoids that are described by amplitude, frequency, and phase functions and the stochastic component is represented by a series of magnitude spectrum envelopes that functions as a time varying filter excited by white noise. These representations make it possible for a synthesized sound to attain all the perceptual characteristics of the original sound. However, sometimes considerable phase variations occur in the deterministic component by using the conventional SMS for the complex sound such as whale sounds when the partial frequencies in successive frames differ. This is because it utilizes the calculated phase to synthesize deterministic component of the sound. As a result, it does not provide a good spectrum matching between original and synthesized spectrum in higher frequency region. To overcome this problem, we propose a modified SMS that provides good spectrum matching of original and synthesized sound by calculating complex residual spectrum in frequency domain and utilizing original phase information to synthesize the deterministic component of the sound. Analysis and simulation results for synthesizing whale sounds suggest that the proposed method is comparable to the conventional SMS in both time and frequency domain. However, the proposed method outperforms the SMS in better spectrum matching.

The Design and Implementation of Automata-based Testing Environments for Multi-thread Java Programs (Java 다중 스레드 프로그램을 위한 오토마타 기반 테스팅 환경의 설계 및 구현)

  • 서희석;정인상;김병만;권용래
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.12
    • /
    • pp.883-894
    • /
    • 2002
  • Classical deterministic testing controls the execution of concurrent programs based on the equivalence between specifications and programs. However, it is not directly applicable to a situation in which synchronization sequences, being valid but infeasible, are taken into account. To resolve this problem, we had proposed automata-based deterministic testing in our previous works, where a concurrent program is executed according to one of the sequences accepted by the automaton recognizing all sequences semantically equivalent to a given sequence. In this paper, we present the automata-based testing environment for Java multi-thread programs, and we design and implement "Deterministic Executor" in the testing environment. "Deterministic Executor" transforms a Java multi-thread program by applying automata-based deterministic testing, the transformed program presents testing results. "Deterministic Executor" uses "Automata Generator", which generates an equivalent automaton of a test sequence, and "Replay Controller", which controls the execution of programs according to the sequence accepted by the automaton. By illustrating automata-based testing procedures with a gas station example, we show how the proposed approach does works in a Java multi-threaded program.roach does works in a Java multi-threaded program.

Classification of Magnetic Resonance Imagery Using Deterministic Relaxation of Neural Network (신경망의 결정론적 이완에 의한 자기공명영상 분류)

  • 전준철;민경필;권수일
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.2
    • /
    • pp.137-146
    • /
    • 2002
  • Purpose : This paper introduces an improved classification approach which adopts a deterministic relaxation method and an agglomerative clustering technique for the classification of MRI using neural network. The proposed approach can solve the problems of convergency to local optima and computational burden caused by a large number of input patterns when a neural network is used for image classification. Materials and methods : Application of Hopfield neural network has been solving various optimization problems. However, major problem of mapping an image classification problem into a neural network is that network is opt to converge to local optima and its convergency toward the global solution with a standard stochastic relaxation spends much time. Therefore, to avoid local solutions and to achieve fast convergency toward a global optimization, we adopt MFA to a Hopfield network during the classification. MFA replaces the stochastic nature of simulated annealing method with a set of deterministic update rules that act on the average value of the variable. By minimizing averages, it is possible to converge to an equilibrium state considerably faster than standard simulated annealing method. Moreover, the proposed agglomerative clustering algorithm which determines the underlying clusters of the image provides initial input values of Hopfield neural network. Results : The proposed approach which uses agglomerative clustering and deterministic relaxation approach resolves the problem of local optimization and achieves fast convergency toward a global optimization when a neural network is used for MRI classification. Conclusion : In this paper, we introduce a new paradigm to classify MRI using clustering analysis and deterministic relaxation for neural network to improve the classification results.

  • PDF

Reliability analysis of surface settlement by groundwater drawdown from tunnel excavation (터널굴착시 지하수위저하에 의한 지표침하의 신뢰성 해석)

  • Jang, Yeon-Soo;Kim, Hong-Seong;Park, Jeong-Yong;Park, Joon-Mo;Lee, Seong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1426-1433
    • /
    • 2005
  • In this paper, reliability analysis of surface settlement by ground water drawdown is performed using a reliability-groundwater flow numerical model. The result is compared with that of the deterministic model to evaluate the influence of the uncertainty from hydraulic conductivity in the soft ground as well as to determine the range of hydraulic conductivity of grouted ground. From the analyses, it was found that probability of failure to exceed the tolerable settlement was very high, if the hydraulic conductivity of grouted ground is decided from the deterministic flow model only. Reliability analysis which evaluates variance of hydraulic conductivity should be used together with the deterministic model for grouting design of tunnels to prevent ground water drawdown.

  • PDF

Low Cost SOC(System-On-a-Chip) Testing Method for Reduction of Test Data and Power Dissipation (테스트 데이터와 전력소비 단축을 위한 저비용 SOC 테스트 기법)

  • Hur Yongmin;Lin Chi-ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.83-90
    • /
    • 2004
  • This paper proposes an efficient scan testing method for compression of test input data and reduction of test power for SOC. The proposed method determines whether some parts of a test response can be reused as a part of next input test data on the analysis of deterministic test data and its response. Our experimental results show that benchmark circuits have a high similarity between un-compacted deterministic input test data and its response. The proposed testing method achieves the average of 29.4% reduction of power dissipation based on the number of test clock and 69.7% reduction of test data for ISCAS'89 benchmark circuits.

SIZE OPTIMIATION OF AN ENGINE ROOM MEMBER FOR CRASHWORTHINESS USING RESPONSE SURFACE METHOD

  • Oh, S.;Ye, B.W.;Sin, H.C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.93-102
    • /
    • 2007
  • The frontal crash optimization of an engine room member using the response surface method was studied. The engine room member is composed of the front side member and the sub-frame. The thicknesses of the panels on the front side member and the sub-frame were selected as the design variables. The purpose of the optimization was to reduce the weight of the structure, under the constraint that the objective quantity of crash energy is absorbed. The response surface method was used to approximate the crash behavior in mathematical form for optimization procedure. To research the effect of the regression method, two different methodologies were used in constructing the response surface model, the least square method and the moving least square method. The optimum with the two methods was verified by the simulation result. The precision of the surrogate model affected the optimal design. The moving least square method showed better approximation than the least square method. In addition to the deterministic optimization, the reliability-based design optimization using the response surface method was executed to examine the effect of uncertainties in design variables. The requirement for reliability made the optimal structure be heavier than the result of the deterministic optimization. Compared with the deterministic optimum, the optimal design using the reliability-based design optimization showed higher crash energy absorption and little probability of failure in achieving the objective.

Probabilistic bearing capacity of strip footing on reinforced anisotropic soil slope

  • Halder, Koushik;Chakraborty, Debarghya
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.15-30
    • /
    • 2020
  • The probabilistic bearing capacity of a strip footing placed on the edge of a purely cohesive reinforced soil slope is computed by combining lower bound finite element limit analysis technique with random field method and Monte Carlo simulation technique. To simulate actual field condition, anisotropic random field model of undrained soil shear strength is generated by using the Cholesky-Decomposition method. With the inclusion of a single layer of reinforcement, dimensionless bearing capacity factor, N always increases in both deterministic and probabilistic analysis. As the coefficient of variation of the undrained soil shear strength increases, the mean N value in both unreinforced and reinforced slopes reduces for particular values of correlation length in horizontal and vertical directions. For smaller correlation lengths, the mean N value of unreinforced and reinforced slopes is always lower than the deterministic solutions. However, with the increment in the correlation lengths, this difference reduces and at a higher correlation length, both the deterministic and probabilistic mean values become almost equal. Providing reinforcement under footing subjected to eccentric load is found to be an efficient solution. However, both the deterministic and probabilistic bearing capacity for unreinforced and reinforced slopes reduces with the consideration of loading eccentricity.

NUCLEAR FUEL CYCLE COST ESTIMATION AND SENSITIVITY ANALYSIS OF UNIT COSTS ON THE BASIS OF AN EQUILIBRIUM MODEL

  • KIM, S.K.;KO, W.I.;YOUN, S.R.;GAO, R.X.
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.306-314
    • /
    • 2015
  • This paper examines the difference in the value of the nuclear fuel cycle cost calculated by the deterministic and probabilistic methods on the basis of an equilibrium model. Calculating using the deterministic method, the direct disposal cost and Pyro-SFR (sodium-cooled fast reactor) nuclear fuel cycle cost, including the reactor cost, were found to be 66.41 mills/kWh and 77.82 mills/kWh, respectively (1 mill = one thousand of a dollar, i.e., $10^{-3}$ $). This is because the cost of SFR is considerably expensive. Calculating again using the probabilistic method, however, the direct disposal cost and Pyro-SFR nuclear fuel cycle cost, excluding the reactor cost, were found be 7.47 mills/kWh and 6.40 mills/kWh, respectively, on the basis of the most likely value. This is because the nuclear fuel cycle cost is significantly affected by the standard deviation and the mean of the unit cost that includes uncertainty. Thus, it is judged that not only the deterministic method, but also the probabilistic method, would also be necessary to evaluate the nuclear fuel cycle cost. By analyzing the sensitivity of the unit cost in each phase of the nuclear fuel cycle, it was found that the uranium unit price is the most influential factor in determining nuclear fuel cycle costs.

Probabilistic multi-objective optimization of a corrugated-core sandwich structure

  • Khalkhali, Abolfazl;Sarmadi, Morteza;Khakshournia, Sharif;Jafari, Nariman
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.709-726
    • /
    • 2016
  • Corrugated-core sandwich panels are prevalent for many applications in industries. The researches performed with the aim of optimization of such structures in the literature have considered a deterministic approach. However, it is believed that deterministic optimum points may lead to high-risk designs instead of optimum ones. In this paper, an effort has been made to provide a reliable and robust design of corrugated-core sandwich structures through stochastic and probabilistic multi-objective optimization approach. The optimization is performed using a coupling between genetic algorithm (GA), Monte Carlo simulation (MCS) and finite element method (FEM). To this aim, Prob. Design module in ANSYS is employed and using a coupling between optimization codes in MATLAB and ANSYS, a connection has been made between numerical results and optimization process. Results in both cases of deterministic and probabilistic multi-objective optimizations are illustrated and compared together to gain a better understanding of the best sandwich panel design by taking into account reliability and robustness. Comparison of results with a similar deterministic optimization study demonstrated better reliability and robustness of optimum point of this study.

Design of the Well-Conditioned Observer - A Linear Matrix Inequality Approach - (Well-Conditioned 관측기 설계 - A Linear Matrix Inequality Approach -)

  • Jung, Jong-Chul;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.503-510
    • /
    • 2004
  • In this paper, the well-conditioned observer for a stochastic system is designed so that the observer is less sensitive to the ill-conditioning factors in transient and steady-state observer performance. These factors include not only deterministic uncertainties such as unknown initial estimation error, round-off error, modeling error and sensing bias, but also stochastic uncertainties such as disturbance and sensor noise. In deterministic perspectives, a small value in the L$_{2}$ norm condition number of the observer eigenvector matrix guarantees robust estimation performance to the deterministic uncertainties. In stochastic viewpoints, the estimation variance represents the robustness to the stochastic uncertainties and its upper bound can be minimized by reducing the observer gain and increasing the decay rate. Both deterministic and stochastic issues are considered as a weighted sum with a LMI (Linear Matrix Inequality) formulation. The gain in the well-conditioned observer is optimally chosen by the optimization technique. Simulation examples are given to evaluate the estimation performance of the proposed observer.